Sains Malaysiana 48(1)(2019): 145–154
http://dx.doi.org/10.17576/jsm-2019-4801-17
Revisiting
the Morphology, Microstructure, and Properties of Cellulose Fibre
from Pineapple Leaf so as to Expand Its Utilization
(Mengkaji
Semula Morfologi, Mikrostruktur dan Sifat Serabut Selulosa daripada
Daun Nanas untuk Memperluaskan Penggunaannya)
BUDSARAPORN SURAJARUSARN1, PAWEENA TRAIPERM2 & TAWEECHAI AMORNSAKCHAI1,3,4*
1Polymer Science and
Technology Program, Department of Chemistry, Faculty of Science, Mahidol University,
Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
2Department of Plant
Science, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai 10400, Thailand
3Center of Sustainable
Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon
4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
4Center of Excellence
for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon
4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand
Received: 13 July 2018/Accepted: 28 August 2018
ABSTRACT
Pineapple leaf waste is an agricultural product that is available
in large quantities and is still under-utilized. Therefore, the
aim of this work was to investigate the morphology, microstructure,
and mechanical properties of pineapple leaf fibre (PALF) such that its full potential
may be realized. Pineapple leaf, its fibre bundles and elementary
fibres have been investigated. Morphology, size, and mechanical
properties of fibre bundles extracted from different parts (i.e.
bottom, middle and top) of a leaf were studied. It was found that
the PALF obtained from vascular tissue
and from the mesophyll have different macroscopic shapes. Both,
however, contain micron-size elementary fibres of similar size and
shape. Size and properties of fibre bundles change from the bottom
end of a leaf toward the top end. Pineapple leaf microfibre (PALMF) was found to be smaller
in diameter than other natural fibres. It is also very long and
its structure changes according to its position along the leaf.
At the bottom end a clear and large central hole or lumen can be
observed. At the top the lumen becomes almost undetectable. The
mechanical strength of PALMF appears
to decrease, albeit very slightly, toward the tip of the leaf. The
mechanical properties of the fibres are relatively high and comparable
to that of flax and hemp fibres which are widely studied and used
as reinforcing materials in composites. Very long microfibre can
easily be obtained from fibre bundles by dissolving the binding
matrix. Potential applications for this microfibre are suggested.
Keywords: Cellulose microfibre; elementary fibre; high aspect ratio
fibre; natural fibre; pineapple leaf fibre
ABSTRAK
Sisa daun nanas adalah satu produk pertanian yang tersedia dalam
kuantiti yang besar dan masih kurang dimanfaatkan. Oleh itu, tujuan kajian ini
adalah untuk mengkaji morfologi, mikrostruktur dan sifat mekanik serabut daun
nanas (PALF) supaya potensi penuhnya boleh dicapai. Daun nanas,
berkas serabut dan unsur serabut telah dikaji. Morfologi, saiz dan sifat
mekanik berkas serabut yang diekstrak daripada bahagian yang berbeza (bahagian
bawah, tengah dan atas) daun telah dikaji. Didapati bahawa PALF yang
diperoleh daripada tisu vaskular dan mesofil mempunyai bentuk makroskopik yang
berbeza. Kedua-duanya, bagaimanapun mengandungi unsur serabut saiz mikron
dengan saiz dan bentuk yang sama. Saiz dan sifat berkas serabut berubah dari
hujung bawah daun hingga ke atas. Mikroserabut daun nanas (PALMF)
didapati lebih kecil diameternya daripada serabut semula jadi lain. Ia juga
sangat panjang dan strukturnya berubah mengikut kedudukannya di sepanjang daun.
Di bahagian bawah, lubang pusat yang jelas dan besar atau lumen dapat
diperhatikan. Di bahagian atas pula, lumen hampir tidak dapat dikesan. Kekuatan
mekanik PALMF dilihat berkurangan, walaupun sedikit, ke arah
pucuk daun. Sifat mekanik serabut ini agak tinggi dan setanding dengan serabut
flaks dan hem yang dikaji secara meluas dan digunakan sebagai bahan pengukuh
komposit. Mikroserabut yang panjang boleh diperoleh dengan mudah daripada unsur
serabut dengan melarutkan matriks mengikat. Potensi aplikasi untuk mikroserabut
ini adalah dicadangkan.
Kata kunci: Mikroserabut
selulosa; nisbah serabut aspek tinggi; serabut daun nanas; serabut semula jadi;
unsur serabut
REFERENCES
Akin, D.E., Eder, M., Burgert, I., Müssig, J. &
Slootmaker, T. 2010. Industrial Applications of Natural Fibres: Structure,
Properties and Technical Applications. New York: John Wiley & Sons.
Alwani, M.S., Khalil, A., Islam, M.N., Nadirah, W.O.W. &
Dungani, R. 2014. Fundamental approaches for the application of pineapple leaf
fiber in high performance reinforced composites. Polimery 59: 798-804.
Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z.,
Ishak, M.R. & Hoque, M.E. 2015. A review on pineapple leaves fibre and its
composites. Int. Journal of Polymer Science 2015: Article ID. 950567.
ASTM D3379-75, 1998. Standard Test Method for Tensile
Strength and Young’s Modulus for High Modulus Single Filament Materials.
Bledzki, A.K. & Gassan, J. 1999. Composites reinforced
with cellulose based fibres. Progress in Polymer Science 24: 221-274.
Bos, H.L., Oever, M.J.A.V.D. & Peters, O.C.J.J. 2002. Tensile
and compressive properties of flax fibres for natural fibre reinforced
composites. Journal of Materials Science 37: 1683-1692.
Brígida, A.I.S., Calado, V.M.A., Gonçalves, L.R.B. &
Coelho, M.A.Z. 2010. Effect of chemical treatments on properties of green
coconut fiber. Carbohydrate Polymers 79: 832-838.
Charlet, K., Jernot, J.P., Eve, S., Gomina, M. & Bréard,
J. 2010. Multi-scale morphological characterization of flax: From the stem to
the fibrils. Carbohydrate Polymers 82: 54-61.
Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S.,
Pothan, L.A. & Kottaisamy, M. 2010. Isolation of nanocellulose from
pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81:
720-725.
Evert, R.F. 2006a. Cell wall. Esau’s Plant Anatomy:
Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and
Development. New York: John Wiley & Sons. pp. 65-101.
Evert, R.F. 2006b. Structure and development of the plant
body- An overview. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of
the Plant Body: Their Structure, Function, and Development. New York: John
Wiley & Sons. pp. 1-13.
Faruk, O., Bledzki, A.K., Fink, H.P. & Sain, M. 2012.
Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer
Science 37: 1552-1596.
French, A.D. 1978. The crystal structure of native ramie
cellulose. Carbohydrate Research 61: 67-80.
Fu, T.K., Li, J.H., Wang, Q.H., Huang, H., Wei, X.Y., Cui,
L.H., Wang, Y.H. & Wang, F. 2013. Structure and properties of natural
cellulose extracted from pineapple leaf. Advanced Materials Research 815:
379-385.
Hebert, J.J. & Muller, L.L. 1974. An electron
diffraction study of the crystal structure of native cellulose. Journal of
Applied Polymer Science 18: 3373-3377.
Johansen, D.A. 1940. Plant Microtechnique. New York:
McGraw- Hill Book Company Inc.
Kalia, S., Kaith, B.S. & Kaur, I. 2011. Cellulose
Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology.
Springer Science & Business media.
Kannan, T.G., Chang, M.W. & Chen, Y.W. 2013. Effect of
reinforcement on the mechanical and thermal properties of flax/polypropylene
interwoven fabric composites. Journal of Industrial Textiles 42:
417-433.
Kengkhetkit, N. & Amornsakchai, T. 2014. A new approach
to ‘Greening’ plastic composites using pineapple leaf waste for performance and
cost effectiveness. Materials & Design 55: 292-299.
Kengkhetkit, N. & Amornsakchai, T. 2012. Utilisation of
pineapple leaf waste for plastic reinforcement: 1. A novel extraction method
for short pineapple leaf fiber. Industrial Crops and Products 40: 55-61.
Khalil, H.P.S.A., Alwani, M.S. & Omar, A.K.M. 2007.
Chemical composition, anatomy, lignin distribution and cell wall structure of
Malaysian plant waste fibers. BioResources 1: 220-232.
Labbé, N., Rials, T.G., Kelley, S.S., Cheng, Z.M., Kim, J.Y.
& Li, Y. 2005. FT-IR imaging and pyrolysis-molecular beam mass
spectrometry: New tools to investigate wood tissues. Wood Science and
Technology 39: 61-76.
Lavoine, N., Desloges,
I., Dufresne, A. & Bras, J. 2012. Microfibrillated cellulose - Its barrier
properties and applications in cellulosic materials: A review. Carbohydrate
Polymers 90: 735-764.
Lin, J., Yu, L., Tian, F., Zhao, N., Li, X., Bian, F. &
Wang, J. 2014. Cellulose nanofibrils aerogels generated from jute fibers. Carbohydrate
Polymers 109: 35-43.
Madsen, B. & Gamstedt, E.K. 2013. Wood versus plant
fibers: Similarities and differences in composite applications. Advances in
Materials Science and Engineering 2013: Article ID. 564346.
Marchessault, R.H. 2009. Application of infra-red
spectroscopy to cellulose and wood polysaccharides. Pure and Applied
Chemistry 5: 107-130.
Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M. &
Hinrichsen, G. 2004. A review on pineapple leaf fibers, sisal fibers and their
biocomposites. Macromolecular Materials and Engineering 289: 955-974.
Mukherjee, P.S. & Satyanarayana, K.G. 1986. Structure
and properties of some vegetable fibres: Part 2 Pineapple fibre (Anannus
comosus). Journal of Materials Science 21: 51-56.
Neto, A.R.S., Araujo, M.A.M., Barboza, R.M.P., Fonseca,
A.S., Tonoli, G.H.D., Souza, F.V.D., Mattoso, L.H.C. & Marconcini, J.M.
2015. Comparative study of 12 pineapple leaf fiber varieties for use as
mechanical reinforcement in polymer composites. Industrial Crops and
Products 64: 68-78.
Paralikar, K.M. & Betrabet, S.M. 1977. Electron
diffraction technique for the determination of cellulose crystallinity. Journal
of Applied Polymer Science 21: 899-903.
Pervaiz, M. & Sain, M.M. 2003. Carbon storage potential
in natural fiber composites. Resources Conservation and Recycling 39:
325-340.
Prukkaewkanjana, K., Thanawan, S. & Amornsakchai, T.
2015. High performance hybrid reinforcement of nitrile rubber using short
pineapple leaf fiber and carbon black. Polymer Testing 45: 76-82.
Rasband, W.S. & ImageJ, U.S. 1997-2015. National
Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/.
Accessed on 25 March 2015.
Rinne, H. 2008. The Weibull Distribution: A Handbook.
Boca Raton: CRC Press.
Saha, S.C., Das, B.K., Ray, P.K., Pandey, S.N. &
Goswami, K. 1993. Some physical properties of pineapple leaf fiber (PALF)
influencing its textile behavior. Journal of Applied Polymer Science 50:
555-556.
Santos, R.M., Flauzino Neto, W.P., Silvério, H.A., Martins,
D.F., Dantas, N.O. & Pasquini, D. 2013. Cellulose nanocrystals from
pineapple leaf, a new approach for the reuse of this agro-waste. Industrial
Crops and Products 50: 707-714.
Tanpichai, S. & Witayakran, S. 2015. Mechanical
properties of all-cellulose composites made from pineapple leaf microfibers. Key
Engineering Materials 659: 453-457.
Wirawan, R., Zainudin, E.S. & Sapuan, S.M. 2009.
Mechanical properties of natural fibre reinforced PVC composites: A review. Sains
Malaysiana 38(4): 531-535.
Woodcock, C. & Sarko, A. 1980. Packing analysis of
carbohydrates and polysaccharides. 11. molecular and crystal structure of
native ramie cellulose. Macromolecules 13: 1183-1187.
Xiao, B., Sun, X.F. & Sun, R. 2001. Chemical, structural
and thermal characterizations of alkali-soluble lignins and hemicelluloses, and
cellulose from maize stems, rye straw, and rice straw. Polymer Degradation
and Stability 74: 307- 319.
Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. 2007.
Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:
1781-1788.
Yusoff, M.Z.M., Salit, M.S. & Ismail, N. 2009. Tensile
properties of single oil palm empty fruit bunch (OPEFB) fibre. Sains Malaysiana 38(4): 525-529.
*Corresponding
author; email: taweechai.amo@mahidol.ac.th
|