Sains Malaysiana 48(1)(2019): 145–154

http://dx.doi.org/10.17576/jsm-2019-4801-17

 

Revisiting the Morphology, Microstructure, and Properties of Cellulose Fibre from Pineapple Leaf so as to Expand Its Utilization

(Mengkaji Semula Morfologi, Mikrostruktur dan Sifat Serabut Selulosa daripada Daun Nanas untuk Memperluaskan Penggunaannya)

 

BUDSARAPORN SURAJARUSARN1, PAWEENA TRAIPERM2 & TAWEECHAI AMORNSAKCHAI1,3,4*

 

1Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand

 

2Department of Plant Science, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai 10400, Thailand

 

3Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand

 

4Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom 73170, Thailand

 

Received: 13 July 2018/Accepted: 28 August 2018

 

ABSTRACT

Pineapple leaf waste is an agricultural product that is available in large quantities and is still under-utilized. Therefore, the aim of this work was to investigate the morphology, microstructure, and mechanical properties of pineapple leaf fibre (PALF) such that its full potential may be realized. Pineapple leaf, its fibre bundles and elementary fibres have been investigated. Morphology, size, and mechanical properties of fibre bundles extracted from different parts (i.e. bottom, middle and top) of a leaf were studied. It was found that the PALF obtained from vascular tissue and from the mesophyll have different macroscopic shapes. Both, however, contain micron-size elementary fibres of similar size and shape. Size and properties of fibre bundles change from the bottom end of a leaf toward the top end. Pineapple leaf microfibre (PALMF) was found to be smaller in diameter than other natural fibres. It is also very long and its structure changes according to its position along the leaf. At the bottom end a clear and large central hole or lumen can be observed. At the top the lumen becomes almost undetectable. The mechanical strength of PALMF appears to decrease, albeit very slightly, toward the tip of the leaf. The mechanical properties of the fibres are relatively high and comparable to that of flax and hemp fibres which are widely studied and used as reinforcing materials in composites. Very long microfibre can easily be obtained from fibre bundles by dissolving the binding matrix. Potential applications for this microfibre are suggested.

 

Keywords: Cellulose microfibre; elementary fibre; high aspect ratio fibre; natural fibre; pineapple leaf fibre

 

ABSTRAK

Sisa daun nanas adalah satu produk pertanian yang tersedia dalam kuantiti yang besar dan masih kurang dimanfaatkan. Oleh itu, tujuan kajian ini adalah untuk mengkaji morfologi, mikrostruktur dan sifat mekanik serabut daun nanas (PALF) supaya potensi penuhnya boleh dicapai. Daun nanas, berkas serabut dan unsur serabut telah dikaji. Morfologi, saiz dan sifat mekanik berkas serabut yang diekstrak daripada bahagian yang berbeza (bahagian bawah, tengah dan atas) daun telah dikaji. Didapati bahawa PALF yang diperoleh daripada tisu vaskular dan mesofil mempunyai bentuk makroskopik yang berbeza. Kedua-duanya, bagaimanapun mengandungi unsur serabut saiz mikron dengan saiz dan bentuk yang sama. Saiz dan sifat berkas serabut berubah dari hujung bawah daun hingga ke atas. Mikroserabut daun nanas (PALMF) didapati lebih kecil diameternya daripada serabut semula jadi lain. Ia juga sangat panjang dan strukturnya berubah mengikut kedudukannya di sepanjang daun. Di bahagian bawah, lubang pusat yang jelas dan besar atau lumen dapat diperhatikan. Di bahagian atas pula, lumen hampir tidak dapat dikesan. Kekuatan mekanik PALMF dilihat berkurangan, walaupun sedikit, ke arah pucuk daun. Sifat mekanik serabut ini agak tinggi dan setanding dengan serabut flaks dan hem yang dikaji secara meluas dan digunakan sebagai bahan pengukuh komposit. Mikroserabut yang panjang boleh diperoleh dengan mudah daripada unsur serabut dengan melarutkan matriks mengikat. Potensi aplikasi untuk mikroserabut ini adalah dicadangkan.

 

Kata kunci: Mikroserabut selulosa; nisbah serabut aspek tinggi; serabut daun nanas; serabut semula jadi; unsur serabut

REFERENCES

Akin, D.E., Eder, M., Burgert, I., Müssig, J. & Slootmaker, T. 2010. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications. New York: John Wiley & Sons.

Alwani, M.S., Khalil, A., Islam, M.N., Nadirah, W.O.W. & Dungani, R. 2014. Fundamental approaches for the application of pineapple leaf fiber in high performance reinforced composites. Polimery 59: 798-804.

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M.R. & Hoque, M.E. 2015. A review on pineapple leaves fibre and its composites. Int. Journal of Polymer Science 2015: Article ID. 950567.

ASTM D3379-75, 1998. Standard Test Method for Tensile Strength and Young’s Modulus for High Modulus Single Filament Materials.

Bledzki, A.K. & Gassan, J. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24: 221-274.

Bos, H.L., Oever, M.J.A.V.D. & Peters, O.C.J.J. 2002. Tensile and compressive properties of flax fibres for natural fibre reinforced composites. Journal of Materials Science 37: 1683-1692.

Brígida, A.I.S., Calado, V.M.A., Gonçalves, L.R.B. & Coelho, M.A.Z. 2010. Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers 79: 832-838.

Charlet, K., Jernot, J.P., Eve, S., Gomina, M. & Bréard, J. 2010. Multi-scale morphological characterization of flax: From the stem to the fibrils. Carbohydrate Polymers 82: 54-61.

Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A. & Kottaisamy, M. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81: 720-725.

Evert, R.F. 2006a. Cell wall. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. New York: John Wiley & Sons. pp. 65-101.

Evert, R.F. 2006b. Structure and development of the plant body- An overview. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. New York: John Wiley & Sons. pp. 1-13.

Faruk, O., Bledzki, A.K., Fink, H.P. & Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science 37: 1552-1596.

French, A.D. 1978. The crystal structure of native ramie cellulose. Carbohydrate Research 61: 67-80.

Fu, T.K., Li, J.H., Wang, Q.H., Huang, H., Wei, X.Y., Cui, L.H., Wang, Y.H. & Wang, F. 2013. Structure and properties of natural cellulose extracted from pineapple leaf. Advanced Materials Research 815: 379-385.

Hebert, J.J. & Muller, L.L. 1974. An electron diffraction study of the crystal structure of native cellulose. Journal of Applied Polymer Science 18: 3373-3377.

Johansen, D.A. 1940. Plant Microtechnique. New York: McGraw- Hill Book Company Inc.

Kalia, S., Kaith, B.S. & Kaur, I. 2011. Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology. Springer Science & Business media.

Kannan, T.G., Chang, M.W. & Chen, Y.W. 2013. Effect of reinforcement on the mechanical and thermal properties of flax/polypropylene interwoven fabric composites. Journal of Industrial Textiles 42: 417-433.

Kengkhetkit, N. & Amornsakchai, T. 2014. A new approach to ‘Greening’ plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials & Design 55: 292-299.

Kengkhetkit, N. & Amornsakchai, T. 2012. Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products 40: 55-61.

Khalil, H.P.S.A., Alwani, M.S. & Omar, A.K.M. 2007. Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fibers. BioResources 1: 220-232.

Labbé, N., Rials, T.G., Kelley, S.S., Cheng, Z.M., Kim, J.Y. & Li, Y. 2005. FT-IR imaging and pyrolysis-molecular beam mass spectrometry: New tools to investigate wood tissues. Wood Science and Technology 39: 61-76.

Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764.

Lin, J., Yu, L., Tian, F., Zhao, N., Li, X., Bian, F. & Wang, J. 2014. Cellulose nanofibrils aerogels generated from jute fibers. Carbohydrate Polymers 109: 35-43.

Madsen, B. & Gamstedt, E.K. 2013. Wood versus plant fibers: Similarities and differences in composite applications. Advances in Materials Science and Engineering 2013: Article ID. 564346.

Marchessault, R.H. 2009. Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure and Applied Chemistry 5: 107-130.

Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M. & Hinrichsen, G. 2004. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering 289: 955-974.

Mukherjee, P.S. & Satyanarayana, K.G. 1986. Structure and properties of some vegetable fibres: Part 2 Pineapple fibre (Anannus comosus). Journal of Materials Science 21: 51-56.

Neto, A.R.S., Araujo, M.A.M., Barboza, R.M.P., Fonseca, A.S., Tonoli, G.H.D., Souza, F.V.D., Mattoso, L.H.C. & Marconcini, J.M. 2015. Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products 64: 68-78.

Paralikar, K.M. & Betrabet, S.M. 1977. Electron diffraction technique for the determination of cellulose crystallinity. Journal of Applied Polymer Science 21: 899-903.

Pervaiz, M. & Sain, M.M. 2003. Carbon storage potential in natural fiber composites. Resources Conservation and Recycling 39: 325-340.

Prukkaewkanjana, K., Thanawan, S. & Amornsakchai, T. 2015. High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polymer Testing 45: 76-82.

Rasband, W.S. & ImageJ, U.S. 1997-2015. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/. Accessed on 25 March 2015.

Rinne, H. 2008. The Weibull Distribution: A Handbook. Boca Raton: CRC Press.

Saha, S.C., Das, B.K., Ray, P.K., Pandey, S.N. & Goswami, K. 1993. Some physical properties of pineapple leaf fiber (PALF) influencing its textile behavior. Journal of Applied Polymer Science 50: 555-556.

Santos, R.M., Flauzino Neto, W.P., Silvério, H.A., Martins, D.F., Dantas, N.O. & Pasquini, D. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50: 707-714.

Tanpichai, S. & Witayakran, S. 2015. Mechanical properties of all-cellulose composites made from pineapple leaf microfibers. Key Engineering Materials 659: 453-457.

Wirawan, R., Zainudin, E.S. & Sapuan, S.M. 2009. Mechanical properties of natural fibre reinforced PVC composites: A review. Sains Malaysiana 38(4): 531-535.

Woodcock, C. & Sarko, A. 1980. Packing analysis of carbohydrates and polysaccharides. 11. molecular and crystal structure of native ramie cellulose. Macromolecules 13: 1183-1187.

Xiao, B., Sun, X.F. & Sun, R. 2001. Chemical, structural and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability 74: 307- 319.

Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788.

Yusoff, M.Z.M., Salit, M.S. & Ismail, N. 2009. Tensile properties of single oil palm empty fruit bunch (OPEFB) fibre. Sains Malaysiana 38(4): 525-529.

 

*Corresponding author; email: taweechai.amo@mahidol.ac.th

 

 

 

 

previous