Sains Malaysiana 48(1)(2019): 165–172

http://dx.doi.org/10.17576/jsm-2019-4801-19

 

Pengaruh Teknik Pengeringan yang Berbeza terhadap Ketumpatan, Keliangan dan Kebioaktifan β-Wolastonit daripada Batu Kapur Tempatan dan Jerami Padi

(Effect of Different Drying Techniques on Density, Porosity and Bioactivity of β-Wollastonite from Local Limestone and Rice Straw)

 

HAMISAH ISMAIL, SHUN XIANG YAU, ROSLINDA SHAMSUDIN* & MUHAMMAD AZMI ABDUL HAMID

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 14 February 2018/Accepted: 13 September 2018

 

ABSTRAK

Pengaruh teknik pengeringan yang berbeza terhadap ketumpatan, keliangan dan kebioaktifan sampel β-wolastonit dikaji dan dibandingkan antara dua teknik pengeringan; kering beku pada -40°C dan di dalam inkubator pada suhu badan (36.5°C). Sampel β-wolastonit dihasilkan daripada batu kapur terkalsin dan abu jerami dengan nisbah CaO:SiO2 pada 45:55. Campuran ini diautoklaf selama 8 jam, kemudian dikeringkan dan disinter pada suhu 950°C selama 3 jam. Sampel β-wolastonit dibentuk menjadi silinder dan dikeringkan menggunakan dua teknik pengeringan iaitu kering beku pada suhu -40°C selama 12 jam dan pada suhu badan (36.5°C) selama dua hari di dalam inkubator. Kemudian, sifat ketumpatan, keliangan dan kebioaktifan sampel berbentuk silinder ini diperiksa. Didapati bahawa penggunaan teknik pengeringan kering beku menghasilkan sampel β-wolastonit yang lebih tumpat, (3.20 gcm-3) berbanding pengeringan pada suhu badan (3.03 gcm-3). Sampel yang dikering beku mempunyai bilangan liang yang lebih rendah berbanding dengan sampel yang dikeringkan pada suhu badan, masing-masing dengan 47.5% dan 53.8%. Bagi sifat kebioaktifan, selepas direndam selama 21 hari di dalam larutan SBF, didapati kalsium fosfat amorfus (ACP) dengan nisbah molar Ca/P yang berkisar antara 1.2 - 2.0 dan hidroksiapatit kurang kalsium (CDHA) dengan nisbah molar Ca/P pada 1.5 - 1.67, terhasil pada permukaan sampel β-wolastonit bagi kedua-dua teknik pengeringan.

 

Kata kunci: Abu jerami padi; β-wolastonit; kebioaktifan; keliangan; ketumpatan

 

ABSTRACT

The influences of different drying techniques on the density, porosity and bioactivity of β-wollastonite samples were studied and compared between two drying techniques; freeze-dried at -40°C and in an incubator at body temperature (36.5°C). β-wollastonite samples were produced from calcined limestone and rice straw ash with CaO:SiO2 ratio of 45:55. The mixture was autoclaved for 8 h, and then dried and sintered at 950°C for 3 h. β-wollastonite samples were formed into cylinders and dried using two techniques, namely the freeze drying technique at -40°C for 12 h and at body temperature (36.5°C) for two days in an incubator. Then, the cylindrical samples were examined for their density, porosity and bioactivity properties. It was found that the freeze drying technique had produced denser β-wollastonite samples, (3.20 gcm-3) compared to drying at body temperature drying, (3.03 gcm-3). Freeze-dried samples had less pores compared to samples dried at body temperature, at 47.5% and 53.8%, respectively. In terms of bioactivity properties, after 21 days of immersion in the SBF solution, amorphous calcium phosphate (ACP), with Ca/P molar ratio that ranged between 1.2 - 2.0 and calcium deficient hydroxyapatite (CDHA), with a Ca/P molar ratio of 1.5 - 1.67 were found on the surface of the samples for both drying techniques.

 

Keywords: Bioactivity; β-wollastonite; density; porosity; rice straw ash

REFERENCES

Azeena, S., Subhapradha, N., Selvamurugan, N., Narayan, S., Srinivasan, N., Murugesan, R. & Chung, T.W. 2017. Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Materials Science and Engineering C 71: 1156-1165.

Ben-nissan, B. 2014. Advances in Calcium Phosphate Biomaterials. Hong Kong: Springer.

Dorozhkin, S.V. 2009. Calcium orthophosphates in nature, biology and medicine. Materials 2(2): 399-498.

Eanes, E.D., Termine, J.D. & Nylen, M.U. 1973. An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcified Tissue International 12(1): 143-158.

Hamisah, I., Roslinda, S. & Muhammad Azmi, A.H. 2016. Characteristics of β -wollastonite derived from rice straw ash and limestone. Journal of the Australian Ceramic Society 52: 163-174.

Hamisah, I., Roslinda, S., Muhammad Azmi, A.H. & Rozidawati, A. 2016. Mekanisme pembentukan apatit pada permukaan sampel β-wolastonit yang dihasilkan daripada abu sekam padi. Sains Malaysiana 45(12): 1779-1785.

Kokubo, T. & Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15): 2907-2915.

Li, H.C., Wang, D.G. & Chen, C.Z. 2015. Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite. Ceramics International 41(8): 10160-10169.

Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y. & Tadé, M.O. 2011. Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research and Design 89(11): 2356- 2364.

Liu, X., Ding, C. & Chu, P.K. 2004. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 25(10): 1755-1761.

Lu, H., Qu, Z. & Zhou, Y. 1998. Preparation and mechanical properties of dense polycrystalline hydroxyapatite through freeze-drying. Journal of Materials Science: Materials in Medicine 9(10): 583-587.

Mami, M., Lucas-Girot, A., Oudadesse, H., Dorbez-Sridi, R., Mezahi, F. & Dietrich, E. 2008. Investigation of the surface reactivity of a sol-gel derived glass in the ternary system SiO2- CaO-P2O5. Applied Surface Science 254(22): 7386-7393.

Mozafari, M., Moztarzadeh, F. & Tahriri, M. 2010. Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid. Journal of Non-Crystalline Solids 356(28-30): 1470-1478.

Orsat, V., Yang, W., Changrue, V. & Raghavan, G.S.V. 2007. Microwave-assisted drying of biomaterials. Food and Bioproducts Processing 85(3): 255-263.

Rashita Abd Rashid, Roslinda Shamsudin, Muhammad Azmi Abdul Hamid & Azman Jalar. 2014. Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. Journal of Asian Ceramic Societies 2(1): 77-81.

Saadaldin, S.A. & Rizkalla, A.S. 2014. Synthesis and characterization of wollastonite glass-ceramics for dental implant applications. Dental Materials: Official Publication of the Academy of Dental Materials 30(3): 364-371.

Sainz, M.A., Pena, P., Serena, S. & Caballero, A. 2010. Influence of design on bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomaterialia 6(7): 2797- 2807.

Shukur, M.M., Al-Majeed, E.A. & Obied, M.M. 2014. Characteristic of wollastonite synthesized from local raw materials. International Journal of Engineering and Technology 4(7): 426-429.

Taşç?, E. 2014. The use of synthetic wollastonite in wall tile glazes. Journal of the Australian Ceramics Society 50(2): 43-51.

Vallet-Regi, M. 2014. Bioceramics with Clinical Applications. UK: John Wiley & Sons Ltd.

Yun, Y.H., Kim, S.B., Kang, B.A., Lee, Y.W., Oh, J.S. & Hwang, K.S. 2006. β-wollastonite reinforced glass-ceramics prepared from waste fluorescent glass and calcium carbonate. Journal of Materials Processing Technology 178(1-3): 61-66.

Zhao, J.C. 2007. Methods for Phase Diagram Determination. Latham: Elsevier.

Zhao, W. & Chang, J. 2004. Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Materials Letters 58(19): 2350-353.

 

*Corresponding author; email: linda@ukm.edu.my

 

 

 

previous