Sains Malaysiana 48(1)(2019): 165–172
http://dx.doi.org/10.17576/jsm-2019-4801-19
Pengaruh
Teknik Pengeringan yang Berbeza terhadap Ketumpatan, Keliangan dan Kebioaktifan
β-Wolastonit daripada Batu Kapur Tempatan dan Jerami Padi
(Effect
of Different Drying Techniques on Density, Porosity and Bioactivity of
β-Wollastonite from Local Limestone and Rice Straw)
HAMISAH ISMAIL, SHUN XIANG YAU, ROSLINDA SHAMSUDIN*
& MUHAMMAD AZMI ABDUL HAMID
Pusat
Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
14 February 2018/Accepted: 13 September 2018
ABSTRAK
Pengaruh teknik pengeringan yang berbeza terhadap ketumpatan,
keliangan dan kebioaktifan sampel β-wolastonit dikaji dan dibandingkan
antara dua teknik pengeringan; kering beku pada -40°C dan di dalam inkubator
pada suhu badan (36.5°C). Sampel β-wolastonit dihasilkan daripada batu
kapur terkalsin dan abu jerami dengan nisbah CaO:SiO2 pada
45:55. Campuran ini diautoklaf selama 8 jam, kemudian dikeringkan dan disinter
pada suhu 950°C selama 3 jam. Sampel β-wolastonit dibentuk menjadi
silinder dan dikeringkan menggunakan dua teknik pengeringan iaitu kering beku
pada suhu -40°C selama 12 jam dan pada suhu badan (36.5°C) selama dua hari di
dalam inkubator. Kemudian, sifat ketumpatan, keliangan dan kebioaktifan sampel
berbentuk silinder ini diperiksa. Didapati bahawa penggunaan teknik pengeringan
kering beku menghasilkan sampel β-wolastonit yang lebih tumpat, (3.20 gcm-3)
berbanding pengeringan pada suhu badan (3.03 gcm-3).
Sampel yang dikering beku mempunyai bilangan liang yang lebih rendah berbanding
dengan sampel yang dikeringkan pada suhu badan, masing-masing dengan 47.5% dan
53.8%. Bagi sifat kebioaktifan, selepas direndam selama 21 hari di dalam
larutan SBF, didapati kalsium fosfat amorfus (ACP)
dengan nisbah molar Ca/P yang berkisar antara 1.2 - 2.0 dan hidroksiapatit
kurang kalsium (CDHA) dengan nisbah molar Ca/P pada
1.5 - 1.67, terhasil pada permukaan sampel β-wolastonit bagi kedua-dua
teknik pengeringan.
Kata kunci: Abu jerami padi; β-wolastonit; kebioaktifan;
keliangan; ketumpatan
ABSTRACT
The influences of different drying techniques on the density,
porosity and bioactivity of β-wollastonite samples were studied and
compared between two drying techniques; freeze-dried at -40°C and in an
incubator at body temperature (36.5°C). β-wollastonite samples were
produced from calcined limestone and rice straw ash with CaO:SiO2 ratio
of 45:55. The mixture was autoclaved for 8 h, and then dried and sintered at
950°C for 3 h. β-wollastonite samples were formed into cylinders and dried
using two techniques, namely the freeze drying technique at -40°C for 12 h and
at body temperature (36.5°C) for two days in an incubator. Then, the
cylindrical samples were examined for their density, porosity and bioactivity
properties. It was found that the freeze drying technique had produced denser
β-wollastonite samples, (3.20 gcm-3) compared to drying at body
temperature drying, (3.03 gcm-3). Freeze-dried samples had
less pores compared to samples dried at body temperature, at 47.5% and 53.8%,
respectively. In terms of bioactivity properties, after 21 days of immersion in
the SBF solution, amorphous calcium phosphate (ACP),
with Ca/P molar ratio that ranged between 1.2 - 2.0 and calcium deficient
hydroxyapatite (CDHA), with a Ca/P molar ratio of 1.5
- 1.67 were found on the surface of the samples for both drying techniques.
Keywords: Bioactivity;
β-wollastonite; density; porosity; rice straw ash
REFERENCES
Azeena,
S., Subhapradha, N., Selvamurugan, N., Narayan, S., Srinivasan, N., Murugesan,
R. & Chung, T.W. 2017. Antibacterial activity of agricultural waste derived
wollastonite doped with copper for bone tissue engineering. Materials
Science and Engineering C 71: 1156-1165.
Ben-nissan,
B. 2014. Advances in Calcium Phosphate Biomaterials. Hong Kong:
Springer.
Dorozhkin,
S.V. 2009. Calcium orthophosphates in nature, biology and medicine. Materials 2(2): 399-498.
Eanes,
E.D., Termine, J.D. & Nylen, M.U. 1973. An electron microscopic study of
the formation of amorphous calcium phosphate and its transformation to
crystalline apatite. Calcified Tissue International 12(1): 143-158.
Hamisah,
I., Roslinda, S. & Muhammad Azmi, A.H. 2016. Characteristics of β
-wollastonite derived from rice straw ash and limestone. Journal of the
Australian Ceramic Society 52: 163-174.
Hamisah,
I., Roslinda, S., Muhammad Azmi, A.H. & Rozidawati, A. 2016. Mekanisme
pembentukan apatit pada permukaan sampel β-wolastonit yang dihasilkan
daripada abu sekam padi. Sains Malaysiana 45(12): 1779-1785.
Kokubo,
T. & Takadama, H. 2006. How useful is SBF in predicting in vivo bone
bioactivity? Biomaterials 27(15): 2907-2915.
Li,
H.C., Wang, D.G. & Chen, C.Z. 2015. Effect of zinc oxide and zirconia on
structure, degradability and in vitro bioactivity of wollastonite. Ceramics
International 41(8): 10160-10169.
Liu,
H., Nakagawa, K., Chaudhary, D., Asakuma, Y. & Tadé, M.O. 2011.
Freeze-dried macroporous foam prepared from chitosan/xanthan
gum/montmorillonite nanocomposites. Chemical Engineering Research and Design 89(11): 2356- 2364.
Liu,
X., Ding, C. & Chu, P.K. 2004. Mechanism of apatite formation on
wollastonite coatings in simulated body fluids. Biomaterials 25(10):
1755-1761.
Lu,
H., Qu, Z. & Zhou, Y. 1998. Preparation and mechanical properties of dense
polycrystalline hydroxyapatite through freeze-drying. Journal of Materials
Science: Materials in Medicine 9(10): 583-587.
Mami,
M., Lucas-Girot, A., Oudadesse, H., Dorbez-Sridi, R., Mezahi, F. &
Dietrich, E. 2008. Investigation of the surface reactivity of a sol-gel derived
glass in the ternary system SiO2- CaO-P2O5. Applied Surface Science 254(22):
7386-7393.
Mozafari,
M., Moztarzadeh, F. & Tahriri, M. 2010. Investigation of the
physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in
simulated body fluid. Journal of Non-Crystalline Solids 356(28-30):
1470-1478.
Orsat,
V., Yang, W., Changrue, V. & Raghavan, G.S.V. 2007. Microwave-assisted
drying of biomaterials. Food and Bioproducts Processing 85(3): 255-263.
Rashita
Abd Rashid, Roslinda Shamsudin, Muhammad Azmi Abdul Hamid & Azman Jalar.
2014. Low temperature production of wollastonite from limestone and silica sand
through solid-state reaction. Journal of Asian Ceramic Societies 2(1):
77-81.
Saadaldin,
S.A. & Rizkalla, A.S. 2014. Synthesis and characterization of wollastonite
glass-ceramics for dental implant applications. Dental Materials: Official
Publication of the Academy of Dental Materials 30(3): 364-371.
Sainz,
M.A., Pena, P., Serena, S. & Caballero, A. 2010. Influence of design on
bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: In vitro simulated
body fluid test and thermodynamic simulation. Acta Biomaterialia 6(7):
2797- 2807.
Shukur,
M.M., Al-Majeed, E.A. & Obied, M.M. 2014. Characteristic of wollastonite
synthesized from local raw materials. International Journal of Engineering
and Technology 4(7): 426-429.
Taşç?,
E. 2014. The use of synthetic wollastonite in wall tile glazes. Journal of
the Australian Ceramics Society 50(2): 43-51.
Vallet-Regi,
M. 2014. Bioceramics with Clinical Applications. UK: John Wiley &
Sons Ltd.
Yun,
Y.H., Kim, S.B., Kang, B.A., Lee, Y.W., Oh, J.S. & Hwang, K.S. 2006.
β-wollastonite reinforced glass-ceramics prepared from waste fluorescent
glass and calcium carbonate. Journal of Materials Processing Technology 178(1-3):
61-66.
Zhao,
J.C. 2007. Methods for Phase Diagram Determination. Latham: Elsevier.
Zhao,
W. & Chang, J. 2004. Sol-gel synthesis and in vitro bioactivity of
tricalcium silicate powders. Materials Letters 58(19): 2350-353.
*Corresponding
author; email: linda@ukm.edu.my
|