Sains Malaysiana 48(1)(2019): 191–197
http://dx.doi.org/10.17576/jsm-2019-4801-22
Measurement
of Neutron Flux and Gamma Dose Rate Distribution Inside a Water
Phantom for Boron Neutron Capture Therapy Study at Dalat Research
Reactor
(Pengukuran
Neutron Fluks dan Pengagihan Kadar Dos Gama dalam Fantom Air untuk
Kajian Terapi Boron Neutron Tertawan di Reaktor Penyelidikan Dalat)
TRINH THI TU ANH1*, PHAM DANG QUYET1, MAI NGUYEN TRONG NHAN2 & PHAM NGOC SON3
1Dalat University, 01
Phu Dong Thien Vuong, Dalat, Vietnam
2Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
3Nuclear Research
Institute, 01 Phu Dong Thien Vuong, Dalat, Vietnam
Received: 7 June 2018/Accepted: 7 September 2018
ABSTRACT
Exposure dose rate to the tumor and surrounding cells during
neutron beam irradiation in Boron Neutron Capture Therapy (BNCT)
comes not only from heavy charged particles produced from the 10B(n,α)7Li
nuclear reaction, but also from neutron-induced reactions with other biological
elements in living tissue, as well as from gamma rays leaked from the reactor
core. At Dalat Research Reactor, Vietnam, the neutron and gamma dose rate
distribution inside a water phantom were measured by using activation method
and Thermoluminescent Dosimeter (TLD) detector, respectively.
The results showed that effective thermal neutron dose rate along the center
line of the water phantom had a maximum value of 479 mSv h-1 at
1 cm in phantom and then decreases rapidly to 4.87 mSv h-1 at
10 cm. The gamma dose rate along the center line of the water phantom also
reach its maximum of 4.31 mSv h-1 at 1 cm depth and decreases
to 1.16 mSv h-1 at 10 cm position. The maximum biological tumor dose
rate was 1.74 Gy-eq h-1, not high enough to satisfy the
treatment requirement of brain tumors. However, the results of this work are
important in supporting of BNCT study in the upcoming stages at
Dalat Research Reactor.
Keywords: BNCT; dose rate; TLD detector;
thermal neutron flux; water phantom
ABSTRAK
Kadar dos pendedahan kepada tumor dan sel sekitarnya semasa pancaran
sinaran neutron dalam Terapi Boron Neutron Tertawan (BNCT)
datang bukan sahaja daripada zarah berat bercas yang dihasilkan
daripada tindak balas nuklear 10B(n,α)7Li,
tetapi juga daripada tindak balas neutron-teraruh daripada unsur
biologi lain dalam tisu hidup, selain daripada sinar gama yang bocor
daripada teras reaktor. Di Reaktor Penyelidikan Dalat, Vietnam,
kadar pengagihan dos neutron dan gama dalam fantom air diukur masing-masing
menggunakan kaedah pengaktifan dan pengesan Thermoluminescent Dosimeter
(TLD). Keputusan menunjukkan bahawa
kadar dos haba neutron yang berkesan sepanjang garis tengah fantom
air mempunyai nilai maksimum 479 mSv h-1 pada 1 cm dalam phantom dan
kemudian menurun dengan pantas kepada 4.87 mSv h-1 pada
10 cm. Kadar dos gama sepanjang garis tengah fantom air juga mencapai
tahap maksimum 4.31 mSv h-1 pada kedalaman 1 cm dan menurun ke
1.16 mSv h-1 pada kedudukan 10 cm. Kadar dos maksimum tumor biologi
adalah 1.74 Gy-eq h-1 namun tidak cukup tinggi untuk memenuhi
keperluan rawatan tumor otak. Walau bagaimanapun, keputusan kajian
ini adalah penting dalam menyokong pengajian BNCT pada peringkat akan datang
di Reaktor Penyelidikan Dalat.
Kata kunci: BNCT;
fantom air; fluks haba neutron; kadar dos; pengesan TLD
REFERENCES
Akan, Z., Türkmen, M., Çak?r, T., Reyhancan,
I.A., Çolak, Ü., Okka, M. & K?z?ltaş, S. 2015. Modification of the
radial beam port of ITU TRIGA Mark II research reactor for BNCT applications. Appl.
Radiat. Isot. 99: 110-116.
Akhlaghi, P., Rafat-Motavalli, L. &
Miri-Hakimabad, S.H. 2013. The measurements of thermal neutron flux distribution
in a paraffin phantom. Pramana - J. Phys. 80(5): 873-885.
Bavarnegin, E., Sadremomtaz, A., Khalafi, H.
& Kasesaz, Y. 2016. Measurement of in-phantom neutron flux and gamma dose
in Tehran research reactor boron neutron capture therapy beam line. J. Cancer
Res. Ther. 12(2): 826-829.
Bortolussi, S. & Altieri, S. 2007. Thermal
neutron irradiation field design for boron neutron capture therapy of human
explanted liver. Med. Phys. 34(12): 4700-4705.
Bortolussi, S., Protti, N., Ferrari, M.,
Postuma, I., Fatemi, S., Prata, M., Ballarini, F., Carante, M.P., Farias, R.,
González, S.J., Marrale, M., Gallo, S., Bartolotta, A., Iacoviello, G., Nigg,
D. & Altieri, S. 2018. Neutron flux and gamma dose measurement in the BNCT
irradiation facility at the TRIGA reactor of the University of Pavia. Nucl.
Instrum. Methods Phys. Res. B 414: 113-120.
Dao-wen, C., Jing-bin, L., Dong, Y., Hui-dong,
W. & Ke-yan, M. 2012. Improvement of the moderator’s thermalization
efficiency for 14 MeV neutrons in boron neutron capture therapy. J.
Radioanal. Nucl. Chem. 292(3): 1085-1088.
Glascock, M.D. 1998. Activation analysis. In Instrumental
Multi-Element Chemical Analysis, edited by Alfassi, Z.B. Dordrecht:
Springer.
Goorley, J.T., Kiger, W.S. & Zamenhof, R.G.
2002. Reference dosimetry calculations for neutron capture therapy with
comparison of analytical and voxel models. Med. Phys. 29(2): 145-156.
Horiguchi, H., Sato, T., Kumada, H., Yamamoto,
T. & Sakae, T. 2014. Estimation of relative biological effectiveness for
boron neutron capture therapy using the PHITS code coupled with a
microdosimetric kinetic model. J. Radiat. Res. 56(2): 382-390.
IAEA. 2016. History, Development and Future
of TRIGA Research Reactor. IAEA, Vienna, Technical Report Series No. 482,
131.
IAEA. 2001. Use of Research Reactors for
Neutron Activation Analysis. IAEA, Vienna, IAEA-TECDOC-1215.
Jarahi, H., Kasesaz, Y. & Saleh-Koutahi,
S.M. 2016. Evaluation of the effective dose during BNCT at TRR thermal column
epithermal facility. Appl. Radiat. Isot. 110: 134-137.
Kwon, S.G., Kim, K.E., Ha, C.W., Moon, P.S.
& Yook, C.C. 1980. Calculation of neutron and gamma-ray flux-to-dose-rate
conversion factors. J. Nucl. Eng. Technol. 12(3): 171-179.
Marashi, M.K. 2000. Analysis of absorbed dose
distribution in head phantom in boron neutron capture therapy. Nucl.
Instrum. Methods Phys. Res. A 440(2): 446-452.
Matsumoto, T. 1996. Design of neutron beams for
boron neutron capture therapy for TRIGA Reactor. Prog. Nucl. Sci. Technol. 33(2):
171-178.
Maučec, M. 2001. Feasibility of the
Utilization of BNCT in Thermalizing Column of TRIGA Reactor. In Frontiers
in Neutron Capture Therapy. 1st ed., edited by Hawthorne, M.F., Shelly, K.
& Wiersema, R.J. Boston, MA: Springer.
Moghaddasi, L. & Bezak, E. 2017. Development
of an integrated Monte Carlo model for glioblastoma multiforme treated with
boron neutron capture therapy. Sci. Rep. 7(1): 7069.
Nagels, S., Hampel, G., Kratz, J.V., Aguilar, A.L., Minouchehr,
S., Otto, G., Schmidberger, H., Schütz, C., Vogtländer, L. &Wortmann, B.
2009. Determination of the irradiation field at the research reactor TRIGA
Mainz for BNCT. Appl. Radiat. Isot. 67(7-8): S242-S246.
Nguyen, K.C., Huynh, T.N., Le, V.V. & Luong, B.V. 2012.
The role of a research reactor in the National Nuclear Energy Programme in
Vietnam: Present and future. In Research Reactors: Safe Management and
Effective Utilization. Proceedings of an International Conference, IAEA,
Morocco.
Perks, C.A., Mill, A.J., Constantine, G., Harrison, K.G.
& Gibson, J.A.B. 1988. A review of boron neutron capture therapy (BNCT) and
the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT
research. Br. J. Radiol. 61(732): 1115-1126.
Sauerwein, W.A.G., Wittig, A., Moss, R. & Nakagawa, Y.
2012. Neutron Capture Therapy. Springer, Berlin, Heidelberg.
Singh, V.P., Badiger, N.M. & Vega-Carrillo, H.R. 2015.
Neutron kerma coefficients of compounds for shielding and dosimetry. Ann.
Nucl. Ener. 75: 189-192.
Takada, K., Isobe, T., Kumada, H., Yamamoto, T., Shida, K.,
Kobayashi, D., Mori, Y., Sakurai, H. & Sakae, T. 2014. Evaluation of the
radiation dose for whole body in boron neutron capture therapy. Prog. Nucl.
Sci. Technol. 4: 820-823.
Tan, V.H. & Son, P.N. 2016. Thermal neutron radiative
capture cross-section of 186W(n, γ)187W reaction. J. Phys. Conf. Ser. 726: 012004.
White, D.R., Griffith, R.V. & Wilson, I.J. 1992. Journal
of the International Commission on Radiation Units and Measurements 24(1):
1-4.
Whittemore, W.L. 1992. A compact triga reactor for Boron
Neutron Capture Therapy. In Progress in Neutron Capture Therapy for Cancer.
1st ed., edited by Allen, B.J., Moore, D.E. & Harrington, B.V. Boston, MA:
Springer.
Yamamoto, T., Matsumura, A., Yamamoto, K., Kumada, H.,
Shibata, Y. & Nose, T. 2002. In-phantom two-dimensional thermal neutron
distribution for intraoperative boron neutron capture therapy of brain tumours. Phys. Med. Biol. 47(14): 2387-2396.
*Corresponding
author; email: anhttt@dlu.edu.vn
|