Sains Malaysiana 48(1)(2019): 81–91
http://dx.doi.org/10.17576/jsm-2019-4801-10
The Escherichia
coli motA Flagellar Gene as a Potential Integration Site for Large
Synthetic DNA
(Gen
Flagelum Escherichia coli motA sebagai Tapak Integrasi yang Berpotensi
untuk DNA Sintetik Besar)
CHEE-HOO YIP1,2, ORR YARKONI2, MARIO JUHAS2, JAMES AJIOKA2, KIEW-LIAN WAN1 & SHEILA NATHAN1*
1School
of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department
of Pathology, Tennis Court Road, University of Cambridge, CB2 1QP Cambridge, United
Kingdom
Received:
29 March 2018/Accepted: 28 August 2018
ABSTRACT
Escherichia coli is used as a chassis for many synthetic
biology applications. However, the limitations of maintaining recombinant
plasmids extra-chromosomally include increased metabolic burden to the host,
constant selective pressure, variable plasmid copy number and plasmid
instability that leads to curing. Hence, to overcome these limitations, DNA constructs
are integrated into the bacterial chromosome to allow stable control of copy
number and to reduce the metabolic burden towards the surrogate host.
Non-essential E. coli flagellar genes have been proposed as potential
chromosomal insertion target sites. In this study, we validated and compared
the efficiency of two loci, namely motA and flgG, as target sites
for synthetic biology applications. To enable this comparison, a dual reporter
strain (DRS) that utilises two reporter proteins, EforRED and
Venus, was developed as a test case. Initially, a yellow reporter plasmid
k14.1_Venus was constructed and subsequently used as the plasmid
backbone for the generation of two other plasmids, k14.1_eforRED and pcat_Venus,
required to build the dual reporter strain. In the DRS,
the eforRED gene was inserted into flgG whereas motA was
disrupted by Venus. This mutant strain was defective in motility (p<0.001)
but growth rate was unaffected. The fluorescence emitted by Venus was higher (p<0.05)
compared to EforRED, suggesting that motA is the better chromosomal target
locus compared to flgG. Hence, this study proposes the use of E.
coli motA as the site for chromosomal insertion for future synthetic biology
applications.
Keywords: Chromosomal integration; protein expression; reporter
system; synthetic biology
ABSTRAK
Bakteria Escherichia
coli digunakan sebagai kes dalam banyak aplikasi biologi sintetik.
Walau bagaimanapun, cabaran untuk mengekalkan plasmid rekombinan
di luar kromosom termasuk peningkatan beban metabolik kepada perumah,
tekanan memilih yang berterusan, pelbagai bilangan salinan plasmid
dan ketidakstabilan plasmid membawa kepada penyingkiran plasmid
daripada bakteria. Untuk mengatasi batasan tersebut, binaan DNA diintegrasikan ke dalam kromosom
bakteria untuk membenarkan bilangan salinan gen yang terkawal dan
mengurangkan beban metabolik kepada perumah pengganti. Gen flagelum
yang tidak perlu telah dicadangkan sebagai tapak sasaran penyisipan
kromosom yang berpotensi. Dalam kajian ini, kami mengesah dan membandingkan
kecekapan dua lokus, iaitu motA dan flgG, sebagai
tapak sasaran untuk aplikasi biologi sintetik. Untuk membenarkan
perbandingan ini, strain dwipelapor (DRS)
yang menggunakan dua protein pelapor, EforRED dan Venus, telah dibangunkan
sebagai kes ujian. Pada mulanya, plasmid pelapor kuning, k14.1_Venus
dibina dan kemudiannya digunakan sebagai tulang belakang plasmid
untuk menjana dua plasmid lain, k14.1_eforRED dan pcat_Venus,
yang diperlukan untuk membina DRS.
Dalam DRS, gen eforRED diselitkan ke dalam flgG manakala
motA disisip dengan Venus. Kemortilan strain mutan
ini dimansuhkan (p<0.001) tetapi kadar pertumbuhannya
tidak terjejas. Pendarfluor yang dipancarkan oleh Venus lebih tinggi
(p<0.05) berbanding dengan EforRED, menunjukkan
bahawa motA merupakan lokus sasaran kromosom yang lebih baik
berbanding dengan flgG. Oleh itu, kajian ini mencadangkan
penggunaan E. coli motA sebagai tapak untuk penyisipan kromosom
dalam aplikasi biologi sintetik pada masa depan.
Kata kunci: Biologi
sintetik; integrasi kromosom; pengungkapan protein; sistem pelapor
REFERENCES
Ajikumar, P.K., Xiao, W., Tyo, K.E.J., Wang, Y.,
Simeon, F., Leonard, E., Mucha, O., Phon, T.H., Pfeifer, B. &
Stephanopoulos, G. 2010. Isoprenoid pathway optimization for Taxol precursor
overproduction in Escherichia coli. Science 330(6000): 70-74.
Alieva, N.O., Konzen, K.A., Field, S.F.,
Meleshkevitch, E.A., Hunt, M.E., Salih, A. & Matz, M.V. 2008. Diversity and
evolution of coral fluorescent proteins. PLoS ONE 3(7): 1-12.
Atsumi, S., Hanai, T. & Liao, J.C. 2008.
Non-fermentative pathways for synthesis of branched-chain higher alcohols as
biofuels. Nature 451: 86-89.
Bai Flagfeldt, D., Siewers, V., Huang, L. &
Nielsen, J. 2009. Characterization of chromosomal integration sites for
heterologous gene expression in Saccharomyces cerevisiae. Yeast 26(10):
545-551.
Bentley, W.E. & Kompala, D.S. 1990. Optimal
induction of protein synthesis in recombinant bacterial cultures. Annals of
the New York Academy of Sciences 589(1): 121-138.
Bhattacharya, S.K. & Dubey, A.K. 1995.
Metabolic burden as reflected by maintenance coefficient of recombinant Escherichia
coli overexpressing target gene. Biotechnology Letters 17(11):
1155-1160.
Bloemendal, S., Löper, D., Terfehr, D., Kopke,
K., Kluge, J., Teichert, I. & Kück, U. 2014. Tools for advanced and
targeted genetic manipulation of the β-lactam antibiotic producer Acremonium
chrysogenum. Journal of Biotechnology 169: 51-62.
Carneiro, S., Ferreira, E.C. & Rocha, I.
2013. Metabolic responses to recombinant bioprocesses in Escherichia coli. Journal of Biotechnology 164(3): 396-408.
Chang, M.C.Y., Eachus, R.A., Trieu, W., Ro, D.K.
& Keasling, J.D. 2007. Engineering Escherichia coli for the
production of functionalized terpenoids using plant P450s. Nature Chemical
Biology 3: 274-277.
Cho, K.M., Yoo, Y.J. & Kang, H.S. 1999.
δ-Integration of endo/exo-glucanase and β-glucosidase genes into the
yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme and
Microbial Technology 25(1-2): 23-30.
Cunningham, D.S., Koepsel, R.R., Ataai, M.M.
& Domach, M.M. 2009. Factors affecting plasmid production in Escherichia
coli from a resource allocation standpoint. Microbial Cell Factories 17:
1-17.
Datsenko, K.A. & Wanner, B.L. 2000. One-step inactivation of
chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings
of the National Academy of Sciences USA 97(12): 6640-6645.
Davis,
M.W. ApE: A plasmid editor. 2012. Version 2.0.49. Utah: University of Utah.
Gibson,
D.G., Young, L., Chuang, R., Venter, J.C., Hutchison, C. & Smith, H.O.
2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature
Methods 6(5): 343-345.
Glick,
B.R. 1995. Metabolic load and heterologous gene expression. Biotechnology
Advances 13(2): 247-261.
Gu,
P., Yang, F., Su, T., Wang, Q., Liang, Q. & Qi, Q. 2015. A rapid and
reliable strategy for chromosomal integration of gene(s) with multiple copies. Scientific
Reports 5(9684): 1-9.
Hanahan,
D., Jessee, J. & Bloom, F.R. 1991. Plasmid transformation of Escherichia
coli and other bacteria. Methods in Enzymology 204: 63-113.
Haseloff,
J. & Ajioka, J. 2009. Synthetic biology: History, challenges and prospects. Journal of the Royal Society, Interface/the Royal Society 6(6): 389-391.
Ishikawa,
M. & Hori, K. 2013. A new simple method for introducing an unmarked
mutation into a large gene of non-competent gram-negative bacteria by FLP/FRT
recombination. BMC Microbiology 13(86): 1-10.
Juhas,
M. 2016. On the road to synthetic life: The minimal cell and genome-scale
engineering. Critical Reviews in Biotechnology 36(3): 416-423.
Juhas,
M. & Ajioka, J.W. 2015a. Identification and validation of novel chromosomal
integration and expression loci in Escherichia coli flagellar region 1. PLoS
ONE 10(3): 1-13.
Juhas,
M. & Ajioka, J.W. 2015b. Flagellar region 3b supports strong expression of
integrated DNA and the highest chromosomal integration efficiency of the Escherichia
coli flagellar regions. Microbial Biotechnology 8(4): 726-738.
Juhas,
M., Evans, L.D.B., Frost, J., Davenport, P.W., Yarkoni, O., Fraser, G.M. &
Ajioka, J.W. 2014. Escherichia coli flagellar genes as target sites for
integration and expression of genetic circuits. PLoS ONE 9(10): 1-7.
Juhas,
M., Davenport, P.W., Brown, J.R., Yarkoni, O. & Ajioka, J.W.
2013. Meeting report: The Cambridge BioDesign TechEvent - Synthetic
Biology, a new 'Age of Wonder'? BTJ-FORUM. pp. 761-763.
Keasling,
J.D. 2008. Synthetic biology for synthetic chemistry. ACS Chemical Biology 3:
64-76.
Kuhlman,
T.E. & Cox, E.C. 2010. Site-specific chromosomal integration of large
synthetic constructs. Nucleic Acids Research 38(6): 1-10.
Kulkarni,
S.K. & Stahl, F.W. 1989. Interaction between the sbcC gene of Escherichia
coli and the gam gene of phage λ. Genetics 253: 249-253.
Macnab,
R.B. 2003. How bacteria assemble flagellar. Annual Review of Microbiology 57(1):
77-100.
Martinez-Morales,
F., Borges, A.C., Martinez, A., Shanmugam, K.T. & Ingram, L.O. 1999.
Chromosomal integration of heterologous DNA in Escherichia coli with
precise removal of markers and replicons used during construction. Journal
of Bacteriology 181(22): 7143-7148.
Mosberg,
J.A., Lajoie, M.J. & Church, G.M. 2010. Lambda Red recombineering in Escherichia
coli occurs through a fully single-stranded intermediate. Genetics 186(3):
791-799.
Muniyappa,
K. & Radding, C.M. 1986. The homologous recombination system of phage
λ: Pairing activities of β protein. Journal of Biological
Chemistry 261: 7472-7478.
Murphy,
K.C. & Campellone, K.G. 2003. Lambda Red-mediated recombinogenic
engineering of enterohemorrhagic and enteropathogenic E. coli. BMC
Molecular Biology 4: 11.
Nagai,
T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K. & Miyawaki, A. 2002. A
variant of yellow fluorescent protein with fast and efficient maturation for
cell-biological applications. Nature Biotechnology 20(1): 87-90.
Ringrose,
L., Lounnas, V., Ehrlich, L., Buchholz, F., Wade, R. & Stewart, A.F. 1998.
Comparative kinetic analysis of FLP and cre recombinases: Mathematical models
for DNA binding and recombination. Journal of Molecular Biology 284(2):
363-384.
Silva,
F., Queiroz, J.A. & Domingues, F.C. 2012. Evaluating metabolic stress and
plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology
Advances 30(3): 691-708.
Sabri,
S., Steen, J.A., Bongers, M., Nielsen, L.K. & Vickers, C.E. 2013.
Knock-in/knock-out (KIKO) vectors for rapid integration of large DNA sequences,
including whole metabolic pathways, onto the Escherichia coli chromosome
at well-characterised loci. Microbial Cell Factories 12(60): 1-14.
Takekawa,
N., Terahara, N., Kato, T. & Gohara, M. 2016. The tetrameric MotA complex
as the core of the flagellar motor stator from hyperthermophilic bacterium. Scientific
Reports 6(31526): 1-8.
Tyo,
K.E., Ajikumar, P.K. & Stephanopoulos, G. 2009. Stabilized gene duplication
enables long-term selection-free heterologous pathway expression. Nature
Biotechnology 27(8): 760-765.
Ublinskaya,
A.A., Samsonov, V.V., Mashko, S.V. & Stoynova, N.V. 2012. A PCR-free
cloning method for the targeted Q80 Int-mediated integration of any long DNA
fragment, bracketed with meganuclease recognition sites, into the Escherichia
coli chromosome. Journal of Microbiological Methods 89: 167-173.
van
der Krogt, G.N., Ogink, J., Ponsioen, B. & Jalink, K. 2008. A comparison of
donor-acceptor pairs for genetically encoded FRET sensors: Application to the
Epac cAMP sensor as an example. PLoS ONE 3(4): 1-9.
Yansura,
D.G. & Henner, D.J. 1984. Use of the Escherichia coli lac repressor
and operator to control gene expression in Bacillus subtilis. Proceedings
of the National Academy of Sciences USA 81(2): 439-443.
Zhu,
X.D. & Sadowski, P.D. 1995. Cleavage-dependent ligation by the FLP
recombinase. Journal of Biological Chemistry 270(39): 23044-23054.
*Corresponding
author; email: sheila@ukm.edu.my
|