Sains Malaysiana 48(1)(2019): 93–102
http://dx.doi.org/10.17576/jsm-2019-4801-11
Optimization
of the Production of Lovastatin from Aspergillus sclerotiorum PSU-RSPG178 under Static Liquid Culture using Response Surface
Methodology
(Pengoptimuman
Pengeluaran Lovastatin daripada Aspergillus sclerotiorum PSU-RSPG178
di bawah Kultur Cecair Statik menggunakan Kaedah Gerak Balas Permukaan)
SUDARAT SUWANNARAT1, JUTARUT IEWKITTAYAKORN1, YAOWAPA SUKPONDMA2, VATCHARIN RUKACHAISIRIKUL2, SOUWALAK PHONGPAICHIT3 & WILAIWAN CHOTIGEAT1,4*
1Department of
Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of
Songkla University, Hat Yai, Songkhla 90112, Thailand
2Department of
Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla
90112, Thailand
3Department of
Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai,
Songkhla 90112, Thailand
4Center for Genomics
and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat
Yai, Songkhla 90112, Thailand
Received: 13 October 2017/Accepted:
5 September 2018
ABSTRACT
The effect of lovastatin on cholesterol synthesis is well known.
Although lovastatin has been produced from several Aspergillus species and cultivation systems,
the yield of lovastatin from Aspergillus sclerotiorum PSU-RSPG178
in a static liquid system has not yet been determined. Therefore, the objective
of this study was to optimize lovastatin production from this strain using a central
composite design developed through response surface methodology (RSM).
The inoculum was prepared from mycelium or spore cultured in static liquid and
shaking systems with potato dextrose broth (PDB)
as the medium. The best inoculum preparation and cultivation systems were
selected to study the optimization of the four fermentation parameters of
medium concentration (X-5X), temperature (25-37°C), culture medium to flask
volume ratio (2.5-12.5) and time (7-35 days). The best inoculum preparation was
the mycelium method and the best cultivation system was the static liquid
system. In the optimization procedure, a yield of 1315.69 mg/L lovastatin was
obtained at a PDB concentration of 5X, a temperature of 25°C, a medium
to flask volume ratio of 1:2.5 and a time of 21 days. In a model employing the
optimized parameters, temperature was found to have the most effect on
lovastatin production, which will decrease if temperature increases above 25°C.
Based on this study, A. sclerotiorum PSU-RSPG178 can be a useful
strain for producing lovastatin and RSM as an optimization
technique not only reduced the number of experiments but also resulted in an
optimized lovastatin yield.
Keywords: Aspergillus
sclerotiorum PSU-RSPG178; hypercholesterolemic; liquid static culture;
lovastatin; RSM
ABSTRAK
Kesan lovastatin pada sintesis kolesterol telah diketahui.
Walaupun lovastatin dihasilkan daripada beberapa spesies Aspergillus dan sistem penanaman, hasil bagi
lovastatin daripada Aspergillus sclerotiorum PSU-RSPG178
dalam sistem cecair statik masih belum ditentukan. Oleh itu, objektif kajian
ini adalah untuk mengoptimumkan pengeluaran lovastatin daripada strain ini
menggunakan reka bentuk komposit pusat yang dibangunkan melalui kaedah gerak
balas permukaan (RSM). Inokulum disediakan daripada
miselium atau spora dikultur dalam cecair statik dan sistem goncangan dengan
kaldu kentang dektrosa (PDB) sebagai medium. Sistem penyediaan
dan penanaman inokulum terbaik telah dipilih untuk kajian pengoptimuman empat
parameter penapaian kepekatan sederhana (X-5X), suhu (25-37°C), kultur medium
kepada nisbah isi padu kelalang (2.5-12.5) dan masa (7-35 hari). Persediaan
inokulum terbaik adalah kaedah miselium dan sistem penanaman terbaik adalah
sistem cecair statik. Dalam prosedur pengoptimuman, hasil lovastatin sebanyak
1315.69 mg/L telah diperoleh pada kepekatan PDB 5X,
suhu 25°C, medium kepada nisbah isi padu kelalang 1:2.5 dan tempoh masa 21
hari. Model yang menggunakan parameter optimum, suhu didapati memberi kesan
ketara pada pengeluaran lovastatin, yang akan berkurang jika suhu meningkat
melebihi 25°C. Berdasarkan kajian ini, A. sclerotiorum PSU-RSPG178
boleh menjadi strain yang berguna untuk menghasilkan lovastatin dan RSM sebagai
teknik pengoptimuman yang bukan sahaja mengurangkan bilangan uji kaji tetapi
juga memberikan hasil optimum lovastatin.
Kata kunci: Aspergillus sclerotiorum PSU-RSPG178;
hiperkolesterol; kultur cecair statik; lovastatin; RSM
REFERENCES
Atl?, B., Yamaç, M., Y?ld?z, Z. &
Isikhuemhen, O.S. 2016. Statistical optimization of lovastatin production by Omphalotus
olearius (DC.) singer in submerged fermentation. Preparative
Biochemistry & Biotechnology 46: 254-260.
Azeem, M., Saleem, Y., Hussain, Z., Zahoor, S.
& Javed, M.M. 2018. Optimization of culture conditions for the production
of lovastatin by Aspergillus terreus in submerged fermentation. Pharmaceutical
Chemistry Journal 52(3): 284-289.
Daengrot, C., Rukachaisirikul, V., Tansakul, C.,
Thongpanchang, T., Phongpaichit, S., Bowornwiriyapan, K. & Sakayaroj, J.
2015. Eremophilane sesquiterpenes and diphenyl thioethers from the soil fungus Penicillium
copticola PSU-RSPG138. Journal of Natural Products 78: 615-622.
Dikshit, R. & Tallapragada, P. 2015.
Bio-synthesis and screening of nutrients for lovastatin by Monascus sp.
under solid-state fermentation. Journal of Food Science and Technology 52:
6679-6686.
Douglas, G.C. 1984. Propagation of eight
cultivars of Rhododendron in vitro using agar-solidified and liquid
media and direct rooting of shoots in vivo. Scientia Horticulturae 24:
337-347.
Dubois, M., Gilles, K., Hamilton, J., Rebers,
P.A. & Smith, F. 1956. Calorimetric method for determination of sugars and
related substances. Analytical Chemistry 28: 350-356.
Ibrahim, D., Weloosamy, H. & Lim, S.H. 2015.
Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1
hyphae and its pectinase production in submerged fermentation. World Journal
of Biological Chemistry 6: 265-271.
Jia, Z., Zhang, X., Zhao, Y. & Cao, X. 2009. Effects of
divalent metal cations on lovastatin biosynthesis from Aspergillus terreus in
chemically defined medium. World Journal of Microbiology and Biotechnology 25:
1235-1241.
Juzlov,
P., Martinkova, L. & Kren, V. 1996. Secondary metabolites of the fungus Monascus. Journal of Industrial Microbiology 16: 163-170.
Kamath, P.V., Dwarakanath, B.S., Chaudhary, A. &
Janakiraman, S. 2015. Optimization of culture conditions for maximal lovastatin
production by Aspergillus terreus (KM017963) under solid state
fermentation. HAYATI Journal of Biosciences 22: 174-180.
Kim, E., Hahn, E., Murthy, H. & Paek, K.Y. 2003. High
frequency of shoot multiplication and bulblet formation of garlic in liquid
cultures. Plant Cell, Tissue and Organ Culture 73: 231-236.
Lai, L.S., Hung, C.S. & Lo, C.C. 2007. Effects of
lactose and glucose on production of itaconic acid and lovastatin by Aspergillus
terreus ATCC 20542. Journal of Bioscience and Bioengineering 104:
9-13.
Lai, L.S.T., Tsai, T.H., Wang, T.C. & Cheng, T.Y. 2005.
The influence of culturing environments on lovastatin production by Aspergillus
terreus in submerged cultures. Enzyme and Microbial Technology 36:
737-748.
López, J.L.C., Pérez, J.M.S., Sevilla, J.M.F., Fernández,
F.G.A., Grima, E.M. & Chisti, Y. 2003. Production of lovastatin by Aspergillus
terreus: Effects of the C:N ratio and the
principal nutrients on growth and metabolite production. Enzyme and
Microbial Technology 33: 270-277.
Manzoni, M., Rollini, M., Bergomi, S. & Cavazzoni. 1998.
Production and purification of statins from Aspergillus terreus strains. Biotechnology Technology 12(7): 529-532.
Marcin, B. & Marta, P. 2011. Lovastatin and (+)-geodin
formation by Aspergillus terreus ATCC 20542 in a batch culture with the
simultaneous use of lactose and glycerol as carbon sources. Engineering in
Life Sciences 11: 272-282.
Mihos, C.G., Pineda, A.M. & Santana, O. 2014.
Cardiovascular effects of statins, beyond lipid-lowering properties.
Pharmacological Research 88: 12-19.
Mouafi, F.E., Ibrahim, G.S. & Elsoud, M. 2016.
Optimization of lovastatin production from Aspergillus fumigatus. Journal
of Genetic Engineering and Biotechnology 14: 253-259.
Mulder, K.C., Mulinari, F., Franco, O.L., Soares, M.S.,
Magalhães, B.S. & Parachin, N.S. 2015. Lovastatin production: From
molecular basis to industrial process optimization. Biotechnology Advances 33:
648-665.
Mukhtar, H., Ijaz, S.S. & Ikram-ul, H. 2014. Upstream
and downstream processing of lovastatin by Aspergillus terreus. Cell
Biochemistry and Biophysics 70: 309-320.
Munir, N., Asghar, M., Murtaza, M.A., Akhter, N., Rasool,
G., Shah, S.M.A., Tahir, I.M., Khan, F.S., Riaz, M., Sultana, S., Rashid, A.,
Akhlaq, M. & Akram, M. 2018. Enhanced production of Lovastatin by
filamentous fungi through solid state fermentation. Pakistan Journal of
Pharmaceutical Sciences 31 (4): 1583-1589.
Negishi, S., Haung, Z.C., Hasumi, K. & Murakawa, S.
1986. Endo a productivity of onacolin K (mevinolin) in the genus Monascus. Journal of Fermentation and Bioengineering 64: 509-512.
Pansuriya, R.C. & Singhal, R.S. 2010. Response surface
methodology for optimization of production of lovastatin by solid state
fermentation. Brazilian Journal of Microbiology 41: 164-172.
Patil, R.H., Krishnanb, P. & Maheshwarib, V.L. 2011.
Production of Lovastatin by wild strains of Aspergillus terreus. Natural
Product Communications 6: 183-186.
Phainuphong, P., Rukachaisirikul, V., Saithong, S.,
Phongpaichit, S., Bowornwiriyapan, K., Muanprasat, C., Srimaroeng, C.,
Duangjai, A. & Sakayaroj, J. 2016. Lovastatin analogues from the
soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Journal of
Natural Products 79: 1500-1507.
Ruchir, C.P. & Rekha, S.S. 2009. Supercritical fluid
extraction of lovastatin from the wheat bran obtained after solid-state
fermentation. Food Technology and Biotechnology 47: 159-165.
Samiee, S.M., Moazami, N., Haghighi, S., Mohseni, F.A.,
Mirdamadi, S. & Bakhtiari, M.R. 2003. Screening of lovastatin production by filamentous fungi. Iranian Biomedical Journal 7: 29-33.
Sripalakit, P., Riunkesorn, J. & Saraphanchotiwitthaya,
A. 2011. Utilisation of vegetable oils in the production of lovastatin by Aspergillus
terreus ATCC 20542 in submerged cultivation. Maejo International Journal
of Science and Technology 5: 231-240.
Suraiya, S., Kim, J.H., Tak, J.Y., Siddique, M.P., Young,
C.J., Kim, J.K. & Kong, I.S. 2018. Influences of fermentation parameters on
lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. LWT - Food Science and Technology 92:
1-9.
Tsai, W. & Chu, C. 2008. Static liquid culture of
doritaenopsis seedlings. Scientia Horticulturae 43: 206-210.
Wong, M.Y. & Chu, C.Y. 1995. Effect of medium phase on
the growth of rose explants in vitro. Journal of Agriculture and
Forestry 44: 71-77.
Zhao, Q., Li, M., Chen, M., Zhou, L., Zhao, L., Hu, R., Yan,
R. & Dai, K. 2016. Lovastatin induces platelet apoptosis. Environmental
Toxicology and Pharmacology 42: 69-75.
Zhou, B., Wang, J., Pu, Y., Zhu, M., Liu, S. & Liang, S.
2009. Optimization of culture medium for yellow pigments production with Monascus
anka mutant using response surface methodogy. European Food Research and
Technology 228: 895-901.
*Corresponding author; email:
wilaiwan58@hotmail.com
|