Sains Malaysiana 48(1)(2019): 93–102

http://dx.doi.org/10.17576/jsm-2019-4801-11

 

Optimization of the Production of Lovastatin from Aspergillus sclerotiorum PSU-RSPG178 under Static Liquid Culture using Response Surface Methodology

(Pengoptimuman Pengeluaran Lovastatin daripada Aspergillus sclerotiorum PSU-RSPG178 di bawah Kultur Cecair Statik menggunakan Kaedah Gerak Balas Permukaan)

 

SUDARAT SUWANNARAT1, JUTARUT IEWKITTAYAKORN1, YAOWAPA SUKPONDMA2, VATCHARIN RUKACHAISIRIKUL2, SOUWALAK PHONGPAICHIT3 & WILAIWAN CHOTIGEAT1,4*

 

1Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

 

2Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

 

3Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

 

4Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

 

Received: 13 October 2017/Accepted: 5 September 2018

 

ABSTRACT

The effect of lovastatin on cholesterol synthesis is well known. Although lovastatin has been produced from several Aspergillus species and cultivation systems, the yield of lovastatin from Aspergillus sclerotiorum PSU-RSPG178 in a static liquid system has not yet been determined. Therefore, the objective of this study was to optimize lovastatin production from this strain using a central composite design developed through response surface methodology (RSM). The inoculum was prepared from mycelium or spore cultured in static liquid and shaking systems with potato dextrose broth (PDB) as the medium. The best inoculum preparation and cultivation systems were selected to study the optimization of the four fermentation parameters of medium concentration (X-5X), temperature (25-37°C), culture medium to flask volume ratio (2.5-12.5) and time (7-35 days). The best inoculum preparation was the mycelium method and the best cultivation system was the static liquid system. In the optimization procedure, a yield of 1315.69 mg/L lovastatin was obtained at a PDB concentration of 5X, a temperature of 25°C, a medium to flask volume ratio of 1:2.5 and a time of 21 days. In a model employing the optimized parameters, temperature was found to have the most effect on lovastatin production, which will decrease if temperature increases above 25°C. Based on this study, A. sclerotiorum PSU-RSPG178 can be a useful strain for producing lovastatin and RSM as an optimization technique not only reduced the number of experiments but also resulted in an optimized lovastatin yield.

 

Keywords: Aspergillus sclerotiorum PSU-RSPG178; hypercholesterolemic; liquid static culture; lovastatin; RSM

 

ABSTRAK

Kesan lovastatin pada sintesis kolesterol telah diketahui. Walaupun lovastatin dihasilkan daripada beberapa spesies Aspergillus dan sistem penanaman, hasil bagi lovastatin daripada Aspergillus sclerotiorum PSU-RSPG178 dalam sistem cecair statik masih belum ditentukan. Oleh itu, objektif kajian ini adalah untuk mengoptimumkan pengeluaran lovastatin daripada strain ini menggunakan reka bentuk komposit pusat yang dibangunkan melalui kaedah gerak balas permukaan (RSM). Inokulum disediakan daripada miselium atau spora dikultur dalam cecair statik dan sistem goncangan dengan kaldu kentang dektrosa (PDB) sebagai medium. Sistem penyediaan dan penanaman inokulum terbaik telah dipilih untuk kajian pengoptimuman empat parameter penapaian kepekatan sederhana (X-5X), suhu (25-37°C), kultur medium kepada nisbah isi padu kelalang (2.5-12.5) dan masa (7-35 hari). Persediaan inokulum terbaik adalah kaedah miselium dan sistem penanaman terbaik adalah sistem cecair statik. Dalam prosedur pengoptimuman, hasil lovastatin sebanyak 1315.69 mg/L telah diperoleh pada kepekatan PDB 5X, suhu 25°C, medium kepada nisbah isi padu kelalang 1:2.5 dan tempoh masa 21 hari. Model yang menggunakan parameter optimum, suhu didapati memberi kesan ketara pada pengeluaran lovastatin, yang akan berkurang jika suhu meningkat melebihi 25°C. Berdasarkan kajian ini, A. sclerotiorum PSU-RSPG178 boleh menjadi strain yang berguna untuk menghasilkan lovastatin dan RSM sebagai teknik pengoptimuman yang bukan sahaja mengurangkan bilangan uji kaji tetapi juga memberikan hasil optimum lovastatin.

 

Kata kunci: Aspergillus sclerotiorum PSU-RSPG178; hiperkolesterol; kultur cecair statik; lovastatin; RSM

REFERENCES

Atl?, B., Yamaç, M., Y?ld?z, Z. & Isikhuemhen, O.S. 2016. Statistical optimization of lovastatin production by Omphalotus olearius (DC.) singer in submerged fermentation. Preparative Biochemistry & Biotechnology 46: 254-260.

Azeem, M., Saleem, Y., Hussain, Z., Zahoor, S. & Javed, M.M. 2018. Optimization of culture conditions for the production of lovastatin by Aspergillus terreus in submerged fermentation. Pharmaceutical Chemistry Journal 52(3): 284-289.

Daengrot, C., Rukachaisirikul, V., Tansakul, C., Thongpanchang, T., Phongpaichit, S., Bowornwiriyapan, K. & Sakayaroj, J. 2015. Eremophilane sesquiterpenes and diphenyl thioethers from the soil fungus Penicillium copticola PSU-RSPG138. Journal of Natural Products 78: 615-622.

Dikshit, R. & Tallapragada, P. 2015. Bio-synthesis and screening of nutrients for lovastatin by Monascus sp. under solid-state fermentation. Journal of Food Science and Technology 52: 6679-6686.

Douglas, G.C. 1984. Propagation of eight cultivars of Rhododendron in vitro using agar-solidified and liquid media and direct rooting of shoots in vivo. Scientia Horticulturae 24: 337-347.

Dubois, M., Gilles, K., Hamilton, J., Rebers, P.A. & Smith, F. 1956. Calorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.

Ibrahim, D., Weloosamy, H. & Lim, S.H. 2015. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World Journal of Biological Chemistry 6: 265-271.

Jia, Z., Zhang, X., Zhao, Y. & Cao, X. 2009. Effects of divalent metal cations on lovastatin biosynthesis from Aspergillus terreus in chemically defined medium. World Journal of Microbiology and Biotechnology 25: 1235-1241.

Juzlov, P., Martinkova, L. & Kren, V. 1996. Secondary metabolites of the fungus Monascus. Journal of Industrial Microbiology 16: 163-170.

Kamath, P.V., Dwarakanath, B.S., Chaudhary, A. & Janakiraman, S. 2015. Optimization of culture conditions for maximal lovastatin production by Aspergillus terreus (KM017963) under solid state fermentation. HAYATI Journal of Biosciences 22: 174-180.

Kim, E., Hahn, E., Murthy, H. & Paek, K.Y. 2003. High frequency of shoot multiplication and bulblet formation of garlic in liquid cultures. Plant Cell, Tissue and Organ Culture 73: 231-236.

Lai, L.S., Hung, C.S. & Lo, C.C. 2007. Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. Journal of Bioscience and Bioengineering 104: 9-13.

Lai, L.S.T., Tsai, T.H., Wang, T.C. & Cheng, T.Y. 2005. The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enzyme and Microbial Technology 36: 737-748.

López, J.L.C., Pérez, J.M.S., Sevilla, J.M.F., Fernández, F.G.A., Grima, E.M. & Chisti, Y. 2003. Production of lovastatin by Aspergillus terreus: Effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme and Microbial Technology 33: 270-277.

Manzoni, M., Rollini, M., Bergomi, S. & Cavazzoni. 1998. Production and purification of statins from Aspergillus terreus strains. Biotechnology Technology 12(7): 529-532.

Marcin, B. & Marta, P. 2011. Lovastatin and (+)-geodin formation by Aspergillus terreus ATCC 20542 in a batch culture with the simultaneous use of lactose and glycerol as carbon sources. Engineering in Life Sciences 11: 272-282.

Mihos, C.G., Pineda, A.M. & Santana, O. 2014. Cardiovascular effects of statins, beyond lipid-lowering properties. Pharmacological Research 88: 12-19.

Mouafi, F.E., Ibrahim, G.S. & Elsoud, M. 2016. Optimization of lovastatin production from Aspergillus fumigatus. Journal of Genetic Engineering and Biotechnology 14: 253-259.

Mulder, K.C., Mulinari, F., Franco, O.L., Soares, M.S., Magalhães, B.S. & Parachin, N.S. 2015. Lovastatin production: From molecular basis to industrial process optimization. Biotechnology Advances 33: 648-665.

Mukhtar, H., Ijaz, S.S. & Ikram-ul, H. 2014. Upstream and downstream processing of lovastatin by Aspergillus terreus. Cell Biochemistry and Biophysics 70: 309-320.

Munir, N., Asghar, M., Murtaza, M.A., Akhter, N., Rasool, G., Shah, S.M.A., Tahir, I.M., Khan, F.S., Riaz, M., Sultana, S., Rashid, A., Akhlaq, M. & Akram, M. 2018. Enhanced production of Lovastatin by filamentous fungi through solid state fermentation. Pakistan Journal of Pharmaceutical Sciences 31 (4): 1583-1589.

Negishi, S., Haung, Z.C., Hasumi, K. & Murakawa, S. 1986. Endo a productivity of onacolin K (mevinolin) in the genus Monascus. Journal of Fermentation and Bioengineering 64: 509-512.

Pansuriya, R.C. & Singhal, R.S. 2010. Response surface methodology for optimization of production of lovastatin by solid state fermentation. Brazilian Journal of Microbiology 41: 164-172.

Patil, R.H., Krishnanb, P. & Maheshwarib, V.L. 2011. Production of Lovastatin by wild strains of Aspergillus terreus. Natural Product Communications 6: 183-186.

Phainuphong, P., Rukachaisirikul, V., Saithong, S., Phongpaichit, S., Bowornwiriyapan, K., Muanprasat, C., Srimaroeng, C., Duangjai, A. & Sakayaroj, J. 2016. Lovastatin analogues from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Journal of Natural Products 79: 1500-1507.

Ruchir, C.P. & Rekha, S.S. 2009. Supercritical fluid extraction of lovastatin from the wheat bran obtained after solid-state fermentation. Food Technology and Biotechnology 47: 159-165.

Samiee, S.M., Moazami, N., Haghighi, S., Mohseni, F.A., Mirdamadi, S. & Bakhtiari, M.R. 2003. Screening of lovastatin production by filamentous fungi. Iranian Biomedical Journal 7: 29-33.

Sripalakit, P., Riunkesorn, J. & Saraphanchotiwitthaya, A. 2011. Utilisation of vegetable oils in the production of lovastatin by Aspergillus terreus ATCC 20542 in submerged cultivation. Maejo International Journal of Science and Technology 5: 231-240.

Suraiya, S., Kim, J.H., Tak, J.Y., Siddique, M.P., Young, C.J., Kim, J.K. & Kong, I.S. 2018. Influences of fermentation parameters on lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. LWT - Food Science and Technology 92: 1-9.

Tsai, W. & Chu, C. 2008. Static liquid culture of doritaenopsis seedlings. Scientia Horticulturae 43: 206-210.

Wong, M.Y. & Chu, C.Y. 1995. Effect of medium phase on the growth of rose explants in vitro. Journal of Agriculture and Forestry 44: 71-77.

Zhao, Q., Li, M., Chen, M., Zhou, L., Zhao, L., Hu, R., Yan, R. & Dai, K. 2016. Lovastatin induces platelet apoptosis. Environmental Toxicology and Pharmacology 42: 69-75.

Zhou, B., Wang, J., Pu, Y., Zhu, M., Liu, S. & Liang, S. 2009. Optimization of culture medium for yellow pigments production with Monascus anka mutant using response surface methodogy. European Food Research and Technology 228: 895-901.

 

*Corresponding author; email: wilaiwan58@hotmail.com

 

 

 

 

previous