Sains Malaysiana 48(2)(2019): 259–269

http://dx.doi.org/10.17576/jsm-2019-4802-01

 

Influence of Oceanographic Parameters on the Seasonal Potential Fishing Grounds of Rastrelliger kanagurta using Maximum Entropy Models and Remotely Sensed Data

(Pengaruh Parameter Oseanografi terhadap Kawasan Potensi Musiman Penangkapan Ikan Rastrelliger kanagurta menggunakan Model Entropi Maksimum dan Data Satelit)

 

S.M. YUSOP & M.A. MUSTAPHA*

 

School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 9 March 2018/Accepted: 14 September 2018

 

ABSTRACT

Understanding of the spatial distribution of fish habitats is crucial in order to achieve optimum fishing and to increase efficiency of marine resource management. In this study, seasonal potential suitability habitat model for Rastrelliger kanagurta off the east coast of Peninsular Malaysia was derived using maximum entropy (MaxEnt) by utilizing fishing locations and environmental parameters from remotely sensed sea surface temperature (SST) and chl-a concentration (chl-a) data. The influence of environmental parameters on the formation of the potential fishing zones was also determined. The results showed that all the seasonal models performed significantly better than random with AUC > 0.80, which indicated that the constructed models were applicable with ‘good’ to ‘excellent’ predictive accuracy. The model also showed that chl-a influenced R. kanagurta’s potential fishing ground during northeast and intermediate monsoon of October. Meanwhile, SST contributed more in defining the potential fishing grounds during southwest and intermediate monsoon period of April. The seasonal and spatial extents of potential fishing grounds were largely explained by chl-a (0.32-0.42 mg/m3 during northeast, 0.27-0.66 mg/m3 in April, 0.21-0.30 mg/m3 during southwest monsoon and 0.22-0.39 mg/m3 in October) and SST (29.05-29.94oC during northeast monsoon, 31.18-31.47oC in April, 31.17-31.48oC during southwest monsoon and 30.34-31.11oC in October). This indicated that seasonal changes in oceanographic parameters influenced spatial distribution of fish. The results also demonstrated the applicability and potential of MaxEnt in determination of potential fishing grounds and describing the influence of oceanographic factors on the formation of the area.

 

Keywords: chl-a; habitat suitability map (HSM); MaxEnt; seasonal distribution; SST

ABSTRAK

Memahami taburan reruang habitat ikan adalah penting untuk mencapai penangkapan optimum dan meningkatkan kecekapan pengurusan sumber laut. Dalam kajian ini, model potensi kesesuaian habitat musiman bagi Rastrelliger kanagurta di pantai timur Semenanjung Malaysia diperoleh melalui model entropi maksimum (MaxEnt) dengan menggunakan lokasi penangkapan dan parameter persekitaran suhu permukaan laut (SPL) dan kepekatan klorofil-a (chl-a) daripada data penderiaan jauh. Pengaruh parameter persekitaran terhadap pembentukan zon potensi perikanan juga ditentukan. Hasil model MaxEnt menunjukkan bahawa semua model musiman adalah jauh lebih baik daripada rawak pada AUC> 0.80 yang menunjukkan bahawa model yang dibina sesuai dengan ketepatan ramalan ‘baik’ ke ‘cemerlang’. Keputusan daripada model ini juga menunjukkan bahawa kepekatan chl-a lebih mempengaruhi kawasan potensi perikanan R. kanagurta semasa monsun timur laut dan monsun peralihan pada bulan Oktober. Sementara itu, SPL mempengaruhi penentuan kawasan potensi perikanan semasa musim monsun barat daya dan monsun peralihan pada bulan April. Sebahagian besar kawasan potensi perikanan diasosiasikan dengan chl-a (0.32-0.42 mg/m3 semasa monsun timur laut, 0.27-0.66 mg/m3 pada bulan April, 0.21-0.30 mg/m3 semasa monsun barat daya dan 0.22-0.39 mg/m3 pada bulan Oktober) dan SPL (29.05-29.94oC semasa monsun timur laut, 31.18-31.47oC pada bulan April, 31.17-31.48oC semasa monsun barat daya dan 30.34-31.11oC pada bulan Oktober). Hal ini menunjukkan bahawa perubahan musiman bagi parameter oseanografi mempengaruhi taburan reruang ikan. Keputusan kajian juga menunjukkan kebolehan dan potensi MaxEnt dalam penentuan kawasan potensi perikanan dan menjelaskan pengaruh faktor oseanografi terhadap pembentukan kawasan tersebut.

 

Kata kunci: Klorofil-a; MaxEnt; peta kesesuaian habitat; SPL; taburan bermusim

REFERENCES

Akhir, M.F. & Chuen, Y.J. 2011. Seasonal variation of water characteristics during inter-monsoon along the East Coast of Johor. Journal of Sustainability Science and Management 6: 206-214.

Alabia, I.D., Saitoh, S-I., Mugo, R., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T. & Seito, M. 2015. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific. Fisheries Oceanography 24: 190-203.

Amin, M.A.R., Ahmad, M.F., Hussim, M.H., Embong, M.F. & Draman, R. 2014. Chlorophyll-a concentration variation over Terengganu maritime. International Journal of Innovative, Science, Engineering & Technology 1: 406-410.

Bardiyanto. & Kasa, W. 2012. Studi penangkapan ikan kembung (Rastrelliger kanagurta) dengan menggunakan data satelit di Laut Jawa pada musim tenggara dan barat laut. Ecotrophic 5: 21-26.

Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K., Polovina, J.J., Huret, M., Dulvy, N.K. & Demarcq, H. 2011. Satellite remote sensing for an ecosystem approach to fisheries management. ICES Journal of Marine Science 68: 651-666.

Chaturvedi, N. & Narain, A. 2003. Chlorophyll distribution pattern in the Arabian Sea: Seasonal and regional variability, as observed from SeaWiFS data. International Journal of Remote Sensing 24: 511-518.

Duan, R.Y., Kong, X.Q., Huang, M.Y., Fan, W.Y. & Wang, Z.G. 2014. The predictive performance and stability of six species distribution models. PLoS ONE 9: e112764.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S. & Guisan, A. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151.

Gu, W. & Swihart, R.K. 2004. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biology of Conservation 116: 195-203.

Guisan, A. & Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186.

Guisan, A. & Thuiller, W. 2005. Predicting species distribution: Offering more than simple habitat models. Ecological Letter 8: 993-1009.

Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. 2006. The effects of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785.

Krishnakumar, P.K., Mohamed, K.S., Asokan, P.K., Sathianandan, T.V., Zacharia, P.U., Abdurahiman, K.P., Shettigar, V. & Durgekar, R.N. 2008. How environmental parameters influenced fluctuations in oil sardine and mackerel fishery during 1926-2005 along the South-West Coast of India? Marine Fisheries Information Service Technical and Extension Series 198: 1-5.

Krishnamurthy, V. & Kinter, J.L.III. 2002. The Indian monsoon and its relation to global climate variability. In Global Climate, edited by Rodo, X. New York: Springer-Verlag.

Lanz, E., Nevarez-Martinez, M., Lόpez-Martinez, J. & Dworak, J.A. 2009. Small pelagic fish catches in the Gulf of California associated with sea surface temperature and clorophyll. CalCOFI Report 50: 134-146.

Mackenzie, D.K., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248-2255.

Manderson, J., Palamara, L., Kohut, J. & Oliver, M. 2011. Ocean observatory data are useful for regional habitat modelling of species with different vertical habitat preferences. Marine Ecology Progress Series 438: 1-7.

McKinney, M.A., McMeans, B.C., Tomy, G.T., Rosenberg, B. & Ferguson, S.H. 2012. Trophic transfer of contaminants in a changing arctic marine food web: Cumberland Sound, Nunavut, Canada. Environmental Science and Technology 46: 9914-9922.

Malaysian Meteorological Department (MMD). 2017. Malaysia’s climate. http://www.met.gov.my/web/metmalaysia/climate/ generalinformation/malaysia. Accessed on 19 September 2017.

Morris, L. & Ball, D. 2006. Habitat suitability modelling of economically important fish species with commercial fisheries data. ICES Journal of Marine Science 63: 1590- 1603.

Mustapha, M.A., Shaari, N., Lihan, T., Razib, N.A., Raja Bidin Raja Hassan, Y.M. & Yaacob, K.K.K. 2014. Characterizing potential fishing area of Rastrelliger kanagurta in the exclusive economic zone (EEZ) of Malaysia using remotely sensed oceanographic data. Ecology, Environment and Conservation 20: 15-20.

Muthoni, F.K. 2010. Modelling the spatial distribution of snake species under changing climate scenario in Spain. Tesis S. Sn. Faculty of Geo-information Science and Earth Observation, University of Twente (Unpublished).

Nammalwar, P., Satheesh, S. & Ramesh, R. 2013. Applications of remote sensing in the validations of potential fishing zones (PFZ) along the Coast of North Tamil Nadu, India. Indian Journal of Geo-Marine Sciences 42: 283-292.

Nurdin, S., Mustapha, M.A., Lihan, T. & Abd Ghaffar, M. 2015. Determination of potential fishing grounds of Rastrelliger kanagurta using satellite remote sensing and GIS technique. Sains Malaysiana 44(2): 225-232.

O’Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M. & McClain, C. 1998. Ocean color clorophyll algorithm for SEaWiFS. Journal of Geophysical Research 103: 24937-24954.

Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259.

Phillips, S.J. & Dudik, M. 2008. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 31: 161-175.

Reddy, M.T., Begum, H., Sunil, N., Pandravada, S.R., Sivaraj, N. & Kumar, S. 2015. Mapping the climate suitability using MaxEnt modeling approach for Ceylon Spinach (Basella alba L.) cultivation in India. The Journal of Agricultural Sciences 10: 87-97.

Rijnsdorp, A.D., Peck, M.A., Engelhard, G.H., Möllmann, C. & Pinnegar, J.K. 2009. Resolving the effect of climate change on fish populations. ICES Journal of Marine Science 66:1570-1583.

Shaari, F. & Mustapha, M.A. 2017. Factors influencing the distribution of chl-a along coastal waters of east Peninsular Malaysia. Sains Malaysiana 46(8): 1191-1200.

Solanki, H.U., Dwivedi, R.M., Nayak, S.R., Jadeja, J.V., Thakar, D.B., Dave, H.B. & Patel, M.I. 2001. Application of ocean color monitor chlorophyll and AVHRR SST for fishery forecast: Preliminary validation results off Gujarat Coast, Northwest Coast of India. Indian Journal of Marine Science 30: 132-138.

Syah, A.F., Saitoh, S-I., Alabia, I.D. & Hirawake, T. 2016. Predicting potential fishing zones for Pacific saury (Cololabis saira) with maximum entropy models and remotely sensed data. Fishery Bulletin 114(3): 330-342.

Tobeῆa, M., Prieto, R., Machete, M. & Silva, M.A. 2016. Modeling the potential distribution and richness of Cetaceans in the Azores from Fisheries Observer Program Data. Frontiers in Marine Science 3: 202.

Vivekanandan, E., Gomathy, S., Thirumilu, P., Meiyappan, M.M. & Balakumar, S.K. 2009. Trophic level of fishes occurring along the Indian Coast. Journal of Marine Biological Association of India 51(1): 44-51.

Yanagi, T., Sachoemar, S., Takao, T. & Fujiwara, S. 2001. Seasonal variation of stratification in the Gulf of Thailand. Journal of Oceanography 57(4): 461-470.

Zainuddin, M. & Saitoh, S. 2004. Detection of potential fishing ground for albacore tuna using synoptic measurements of ocean color and thermal remote sensing in the northwestern North Pacific. Geophysical Research Letters 31: L20311.

Zwolinski, J.P., Emmet, R.L. & Demer, D.A. 2011. Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES Journal of Marine Science 68: 867-879.

 

*Corresponding author; email: muzz@ukm.edu.my