Sains Malaysiana 48(2)(2019): 259–269
http://dx.doi.org/10.17576/jsm-2019-4802-01
Influence of Oceanographic Parameters on the
Seasonal Potential Fishing Grounds of Rastrelliger kanagurta using
Maximum Entropy Models and Remotely Sensed Data
(Pengaruh Parameter Oseanografi terhadap Kawasan
Potensi Musiman
Penangkapan Ikan Rastrelliger kanagurta menggunakan
Model Entropi Maksimum dan Data Satelit)
S.M. YUSOP
& M.A. MUSTAPHA*
School of Environmental and Natural Resources
Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Institute of Climate Change, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 9 March 2018/Accepted: 14
September 2018
ABSTRACT
Understanding of the spatial
distribution of fish habitats is crucial in order to achieve optimum fishing
and to increase efficiency of marine resource management. In this study,
seasonal potential suitability habitat model for Rastrelliger
kanagurta off the east coast of Peninsular Malaysia was derived using
maximum entropy (MaxEnt) by utilizing fishing locations and environmental
parameters from remotely sensed sea surface temperature (SST)
and chl-a concentration (chl-a) data. The influence of
environmental parameters on the formation of the potential fishing zones was
also determined. The results showed that all the seasonal models performed
significantly better than random with AUC > 0.80, which indicated
that the constructed models were applicable with ‘good’ to ‘excellent’
predictive accuracy. The model also showed that chl-a influenced R.
kanagurta’s potential fishing ground during northeast and intermediate
monsoon of October. Meanwhile, SST contributed more in
defining the potential fishing grounds during southwest and intermediate
monsoon period of April. The seasonal and spatial extents of potential fishing
grounds were largely explained by chl-a (0.32-0.42 mg/m3 during
northeast, 0.27-0.66 mg/m3 in April, 0.21-0.30 mg/m3 during
southwest monsoon and 0.22-0.39 mg/m3 in October) and SST (29.05-29.94oC
during northeast monsoon, 31.18-31.47oC in April, 31.17-31.48oC
during southwest monsoon and 30.34-31.11oC in October). This indicated
that seasonal changes in oceanographic parameters influenced spatial
distribution of fish. The results also demonstrated the applicability and
potential of MaxEnt in determination of potential fishing grounds and
describing the influence of oceanographic factors on the formation of the area.
Keywords: chl-a;
habitat suitability map (HSM); MaxEnt; seasonal distribution; SST
ABSTRAK
Memahami taburan reruang habitat ikan
adalah penting untuk mencapai penangkapan optimum dan meningkatkan kecekapan
pengurusan sumber laut. Dalam kajian ini, model potensi kesesuaian habitat
musiman bagi Rastrelliger kanagurta di pantai timur Semenanjung Malaysia
diperoleh melalui model entropi maksimum (MaxEnt) dengan menggunakan lokasi
penangkapan dan parameter persekitaran suhu permukaan laut (SPL)
dan kepekatan klorofil-a (chl-a) daripada data penderiaan jauh.
Pengaruh parameter persekitaran terhadap pembentukan zon potensi perikanan juga
ditentukan. Hasil model MaxEnt menunjukkan bahawa semua model musiman adalah
jauh lebih baik daripada rawak pada AUC> 0.80 yang menunjukkan
bahawa model yang dibina sesuai dengan ketepatan ramalan ‘baik’ ke ‘cemerlang’.
Keputusan daripada model ini juga menunjukkan bahawa kepekatan chl-a lebih
mempengaruhi kawasan potensi perikanan R. kanagurta semasa monsun timur
laut dan monsun peralihan pada bulan Oktober. Sementara itu, SPL mempengaruhi
penentuan kawasan potensi perikanan semasa musim monsun barat daya dan monsun
peralihan pada bulan April. Sebahagian besar kawasan potensi perikanan
diasosiasikan dengan chl-a (0.32-0.42 mg/m3 semasa
monsun timur laut, 0.27-0.66 mg/m3 pada bulan April, 0.21-0.30
mg/m3 semasa monsun barat daya dan 0.22-0.39 mg/m3 pada
bulan Oktober) dan SPL (29.05-29.94oC
semasa monsun timur laut, 31.18-31.47oC pada bulan April,
31.17-31.48oC semasa monsun barat daya dan 30.34-31.11oC
pada bulan Oktober). Hal ini menunjukkan bahawa perubahan musiman bagi
parameter oseanografi mempengaruhi taburan reruang ikan. Keputusan kajian juga
menunjukkan kebolehan dan potensi MaxEnt dalam penentuan kawasan potensi
perikanan dan menjelaskan pengaruh faktor oseanografi terhadap pembentukan
kawasan tersebut.
Kata
kunci: Klorofil-a; MaxEnt; peta kesesuaian habitat; SPL;
taburan bermusim
REFERENCES
Akhir, M.F. & Chuen,
Y.J. 2011. Seasonal variation of water characteristics during inter-monsoon
along the East Coast of Johor. Journal of Sustainability Science and
Management 6: 206-214.
Alabia, I.D., Saitoh,
S-I., Mugo, R., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T.
& Seito, M. 2015. Seasonal potential fishing ground prediction of neon
flying squid (Ommastrephes bartramii) in the western and central North
Pacific. Fisheries Oceanography 24: 190-203.
Amin, M.A.R., Ahmad,
M.F., Hussim, M.H., Embong, M.F. & Draman, R. 2014. Chlorophyll-a concentration
variation over Terengganu maritime. International Journal of Innovative,
Science, Engineering & Technology 1: 406-410.
Bardiyanto. & Kasa,
W. 2012. Studi penangkapan ikan kembung (Rastrelliger kanagurta) dengan
menggunakan data satelit di Laut Jawa pada musim tenggara dan barat laut. Ecotrophic 5: 21-26.
Chassot, E., Bonhommeau,
S., Reygondeau, G., Nieto, K., Polovina, J.J., Huret, M., Dulvy, N.K. &
Demarcq, H. 2011. Satellite remote sensing for an ecosystem approach to
fisheries management. ICES Journal of Marine Science 68: 651-666.
Chaturvedi, N. &
Narain, A. 2003. Chlorophyll distribution pattern in the Arabian Sea: Seasonal
and regional variability, as observed from SeaWiFS data. International
Journal of Remote Sensing 24: 511-518.
Duan, R.Y., Kong, X.Q.,
Huang, M.Y., Fan, W.Y. & Wang, Z.G. 2014. The predictive performance and
stability of six species distribution models. PLoS ONE 9: e112764.
Elith, J., Graham, C.H.,
Anderson, R.P., Dudik, M., Ferrier, S. & Guisan, A. 2006. Novel methods
improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151.
Gu, W. & Swihart,
R.K. 2004. Absent or undetected? Effects of non-detection of species occurrence
on wildlife-habitat models. Biology of Conservation 116: 195-203.
Guisan, A. &
Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological
Modelling 135: 147-186.
Guisan, A. &
Thuiller, W. 2005. Predicting species distribution: Offering more than simple
habitat models. Ecological Letter 8: 993-1009.
Hernandez, P.A., Graham,
C.H., Master, L.L. & Albert, D.L. 2006. The effects of sample size and
species characteristics on performance of different species distribution
modeling methods. Ecography 29: 773-785.
Krishnakumar, P.K.,
Mohamed, K.S., Asokan, P.K., Sathianandan, T.V., Zacharia, P.U., Abdurahiman,
K.P., Shettigar, V. & Durgekar, R.N. 2008. How environmental parameters
influenced fluctuations in oil sardine and mackerel fishery during 1926-2005
along the South-West Coast of India? Marine Fisheries Information Service
Technical and Extension Series 198: 1-5.
Krishnamurthy, V. &
Kinter, J.L.III. 2002. The Indian monsoon and its relation to global climate
variability. In Global Climate, edited by Rodo, X. New York:
Springer-Verlag.
Lanz, E.,
Nevarez-Martinez, M., Lόpez-Martinez, J. & Dworak, J.A. 2009. Small
pelagic fish catches in the Gulf of California associated with sea surface
temperature and clorophyll. CalCOFI Report 50: 134-146.
Mackenzie, D.K.,
Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A.
2002. Estimating site occupancy rates when detection probabilities are less
than one. Ecology 83: 2248-2255.
Manderson, J., Palamara,
L., Kohut, J. & Oliver, M. 2011. Ocean observatory data are useful for
regional habitat modelling of species with different vertical habitat
preferences. Marine Ecology Progress Series 438: 1-7.
McKinney, M.A., McMeans,
B.C., Tomy, G.T., Rosenberg, B. & Ferguson, S.H. 2012. Trophic transfer of
contaminants in a changing arctic marine food web: Cumberland Sound, Nunavut,
Canada. Environmental Science and Technology 46: 9914-9922.
Malaysian Meteorological
Department (MMD). 2017. Malaysia’s climate.
http://www.met.gov.my/web/metmalaysia/climate/ generalinformation/malaysia.
Accessed on 19 September 2017.
Morris, L. & Ball,
D. 2006. Habitat suitability modelling of economically important fish species
with commercial fisheries data. ICES Journal of Marine Science 63: 1590-
1603.
Mustapha, M.A., Shaari,
N., Lihan, T., Razib, N.A., Raja Bidin Raja Hassan, Y.M. & Yaacob, K.K.K.
2014. Characterizing potential fishing area of Rastrelliger kanagurta in
the exclusive economic zone (EEZ) of Malaysia using remotely sensed
oceanographic data. Ecology, Environment and Conservation 20: 15-20.
Muthoni, F.K. 2010.
Modelling the spatial distribution of snake species under changing climate
scenario in Spain. Tesis S. Sn. Faculty of Geo-information Science and Earth
Observation, University of Twente (Unpublished).
Nammalwar, P., Satheesh,
S. & Ramesh, R. 2013. Applications of remote sensing in the validations of
potential fishing zones (PFZ) along the Coast of North Tamil Nadu, India. Indian
Journal of Geo-Marine Sciences 42: 283-292.
Nurdin, S., Mustapha,
M.A., Lihan, T. & Abd Ghaffar, M. 2015. Determination of potential fishing
grounds of Rastrelliger kanagurta using satellite remote sensing and GIS
technique. Sains Malaysiana 44(2): 225-232.
O’Reilly, J.E.,
Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A.,
Kahru, M. & McClain, C. 1998. Ocean color clorophyll algorithm for SEaWiFS.
Journal of Geophysical Research 103: 24937-24954.
Phillips, S.J.,
Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species
geographic distributions. Ecological Modelling 190: 231-259.
Phillips, S.J. &
Dudik, M. 2008. Modeling of species distributions with MaxEnt: New extensions
and a comprehensive evaluation. Ecography 31: 161-175.
Reddy, M.T., Begum, H.,
Sunil, N., Pandravada, S.R., Sivaraj, N. & Kumar, S. 2015. Mapping the
climate suitability using MaxEnt modeling approach for Ceylon Spinach (Basella
alba L.) cultivation in India. The Journal of Agricultural Sciences 10:
87-97.
Rijnsdorp, A.D., Peck, M.A., Engelhard,
G.H., Möllmann, C. & Pinnegar, J.K. 2009. Resolving the effect of climate
change on fish populations. ICES Journal of Marine Science 66:1570-1583.
Shaari, F. & Mustapha, M.A. 2017. Factors influencing the distribution of chl-a along coastal
waters of east Peninsular Malaysia. Sains Malaysiana 46(8):
1191-1200.
Solanki, H.U., Dwivedi, R.M., Nayak,
S.R., Jadeja, J.V., Thakar, D.B., Dave, H.B. & Patel, M.I. 2001.
Application of ocean color monitor chlorophyll and AVHRR SST for fishery
forecast: Preliminary validation results off Gujarat Coast, Northwest Coast of
India. Indian Journal of Marine Science 30: 132-138.
Syah, A.F., Saitoh, S-I., Alabia, I.D.
& Hirawake, T. 2016. Predicting potential fishing zones for Pacific saury (Cololabis
saira) with maximum entropy models and remotely sensed data. Fishery
Bulletin 114(3): 330-342.
Tobeῆa, M., Prieto, R., Machete, M.
& Silva, M.A. 2016. Modeling the potential distribution and richness of
Cetaceans in the Azores from Fisheries Observer Program Data. Frontiers in
Marine Science 3: 202.
Vivekanandan, E., Gomathy, S., Thirumilu,
P., Meiyappan, M.M. & Balakumar, S.K. 2009. Trophic level of fishes
occurring along the Indian Coast. Journal of Marine Biological Association
of India 51(1): 44-51.
Yanagi, T., Sachoemar, S., Takao, T.
& Fujiwara, S. 2001. Seasonal variation of stratification in the Gulf of
Thailand. Journal of Oceanography 57(4): 461-470.
Zainuddin, M. & Saitoh, S. 2004.
Detection of potential fishing ground for albacore tuna using synoptic
measurements of ocean color and thermal remote sensing in the northwestern
North Pacific. Geophysical Research Letters 31: L20311.
Zwolinski, J.P., Emmet, R.L. & Demer,
D.A. 2011. Predicting habitat to optimize sampling of Pacific sardine (Sardinops
sagax). ICES Journal of Marine Science 68: 867-879.
*Corresponding author; email:
muzz@ukm.edu.my