Sains Malaysiana 48(2)(2019): 281–289

http://dx.doi.org/10.17576/jsm-2019-4802-03

 

Kebolehupayaan Fitoremediasi oleh Azolla pinnata dalam Merawat Air Sisa Akuakultur

(Phytoremediation Capability by Azolla pinnata in Aquaculture Wastewater Treatment)

 

FARAH DIYANA ARIFFIN1,2, AZHAR ABDUL HALIM1*, MARLIA MOHD HANAFIAH1 & NOR AZIRA RAMLEE1

 

1Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaa Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Sains Kesihatan dan Gunaan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

Received: 29 March 2018/Accepted: 15 September 2018

 

ABSTRAK

Isu kekurangan sumber air bersih merupakan salah satu masalah utama pada masa kini. Bahan pencemar di dalam air merupakan antara penyumbang kepada masalah ini. Salah satu alternatif yang utama dalam penyingkiran bahan pencemar daripada air sisa adalah melalui kaedah fitoremediasi. Kajian ini bertujuan mengkaji kecekapan Azolla pinnata dalam merawat air sisa menggunakan kaedah fitoremediasi. Keberkesanan A. pinnata untuk menyerap nutrien adalah bergantung kepada kualiti air sisa dan kuantiti A. pinnata yang digunakan. Seterusnya satu uji kaji untuk menentukan biojisim A. pinnata selepas rawatan fitoremediasi telah dijalankan. Dalam hasil kajian ini, ammonia dan fosfat merupakan parameter yang utama dalam menentukan keberkesanan rawatan air sisa akuakultur menggunakan kaedah fitoremediasi A. pinnata. Hasil kajian menunjukkan penurunan drastik nilai ammonia apabila air sisa dirawat menggunakan A. pinnata iaitu daripada nilai bacaan purata 7.47 ke 1.67 mg/L. Sementara itu, kepekatan fosfat juga menunjukkan penurunan ketara selepas air sisa dirawat dengan A. pinnata daripada nilai purata 5.73 kepada 1.22 mg/L. Hasil daripada rawatan air sisa akuakultur dengan menggunakan fitoremediasi A. pinnata dapat menunjukkan perubahan disebabkan oleh peningkatan biojisim dengan nilai tertinggi 147.26 gram.

 

Kata kunci: Akuakultur; Azolla pinnata; fitoremediasi; rawatan air sisa

 

ABSTRACT

The issue of lack of clean water sources is one of the main problems today. Pollutants in the water is one of the contributors to the problem. One of the major alternatives in the removal of pollutants from wastewater is through phytoremediation. The objective of this research was to determine the efficiency of phytoremediation method in treating wastewater using Azolla pinnata. The efficacy of A. pinnata to absorb nutrients is dependent on the quality of wastewater and the quantity of A. pinnata. Further, an experiment to determine the A. pinnata biomass by phytoremediation method was carried out. The results of this study show that ammonia and phosphate were the main parameters in determining the effectiveness of aquaculture wastewater treatment using A. pinnata. The results showed a drastic decline in the ammonia when the wastewater was treated with A. pinnata from the average reading value of 7.47 to 1.67 mg/L. Meanwhile, phosphate concentration also showed a drastic decline after the wastewater was treated with A. pinnata from the average value of 5.73 to 1.22 mg/L. The results of treatment of aquaculture wastewater by using phytoremediation of A. pinnata was able to show changes due to an increase in biomass with the highest value of 147.26 gram.

 

Keywords: Aquaculture; Azolla pinnata; phytoremediation: wastewater treatment

REFERENCES

Abdel-Tawwab, M. 2006. Effect of free-floating macrophyte, Azolla pinnata on water physico-chemistry, primary productivity, and the production of Nile Tilapia, Oreochromis niloticus (L.), and Common Carp, Cyprinus carpio L., in fertilized earthen ponds. J. Appl. Aquaculture 18(1): 21-41.

Akinbile, C.O., Ogunrinde, T.A., Hasfalina, C.M. & Hamidi, A.Z. 2015. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata. Int. J. Phytorem. 18(1): 54-61.

Akinbile, C.O. & Yusoff, M.S. 2012. Assessing Water Hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int. J. Phytorem. 14(3): 201-211.

Almeida, C.M.R., Dias, A.C., Mucha, A.P., Bordalo, A.A. & Vanconcelos, M.T.S.D. 2007. Influence of surfactant on the cu phytoremediation potential of a salt marsh plant. Chemosphere 75: 13-140.

APHA. 1999. Standard Methods for the Examination of Water and Wastewater. Edisi ke-20. Washington: American Public Health Association.

Arora, A., Saxena, S. & Sharma, D.K. 2006. Tolerance and phytoaccumulation of chromium by three Azolla species. World J. Microbiol. Biotechnol. 22: 97-100.

Aziz, H.A., Adlan, M.N., Zahari, M.S.M. & Alias, S. 2004. Removal of ammoniacal nitrogen (N–NH3) from municipal solid waste leachate by using activated carbon and limestone. Waste Manage. Res. 22: 371-375.

Begum, A. & Harikrishna, S. 2010. Bioaccumulation of trace metals by aquatic plants. Internat. J. Chem. Tech. Research 2: 250-254.

Boyd, C.E. 2003. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 226: 101-112.

Boyd, C.E. & Queiroz, J. 2001. Feasibility of retention structures, settling basins, and best management practices in effluent regulation for Alabama channel catfish farming. Reviews in Fisheries Science 9: 43-67.

Boyd, C.E. & Tucker, C.S. 1998. Pond Aquaculture Water Quality Management. Boston: Kluwer Academic Publishers.

Carlozzi, P. & Padovani, G. 2016. The aquatic fern Azolla as a natural plant-factory for ammonia removal from fish-breeding fresh wastewater. Environ. Sci. Pollut. Res. 23(9): 8749-8755.

Clemens, S., Palmgren, M.G. & Krämer, U. 2002. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 7: 309-315.

Deshmukh, A.A., Bandela, N.N., Chavan, J.R. & Nalawade, P.M. 2013. Studies on potential use of water hyacinth, Pistia and Azolla for municipal waste water treatment. Indian J. Appl. Res. 3(11): 226-228.

Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R. & Kochian, L.V. 1997. Phytoextraction of cadmium and zinc from a contaminated site. J. Environ. Quali. 26: 1424-1430.

FAO - Food and Agriculture Organization of the United Nations. 2016. The State of World Fisheries and Aquaculture. Rome.

Fazilah, A.M., Chai, T.T., Azman, A.S. & Dayangku, D.M. 2015. Evaluation of the phytoremediation potential of two medicinal plants. Sains Malaysiana 44(4): 503-509.

Ferdoushi, Z., Haque, F., Khan, S. & Haque, M. 2008. The effects of two aquatic floating macrophytes (Lemna and Azolla) as biofilters of nitrogen and phosphate in fish ponds. Turk. J. Fish. Aquat. Sc. 8: 253-258

Geenens, D., Bixio, B. & Thoeye, C. 2010. Combined ozone-activated sludge treatment of landfill leachate. Water Sci. Technol. 44: 359-365.

Gross, A., Boyd, C.E. & Wood, C.W. 2000. Nitrogen transformations and balance in channel catfish ponds. Aquacultural Engineering 24: 1-14.

HACH. 2007. DR 2800 Spectrophotometer: Procedures Manual. Edisi Ke-2. Jerman: Hach Company.

Hechler, W.D. & Dawson, J.O. 1995. Factors affecting nitrogen fixation in Azolla caroliniana. Transactions of the Illinois State Academy of Science 88(3&4): 97-107.

Henry-Silva, G.G. & Camargo, A.F.M. 2006. Efficiency of aquatic macrophytes to treat Nile Tilapia pond effluents. Sci. Agric. 63(5): 433-438.

Iwao, W. & Corazon, R. 1990. Phosphorus and nitrogen contents of Azolla grown in the Philippines. Soil Science and Plant Nutrition 36(2): 319-331.

Jang, J.D., Barford, J.P., Lindawati, K. & Renneberg, R. 2004. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosens. Bioelectron. 19: 805-812.

Kamaruddin, M.A., Mohd Suffian, Y., Abdul Aziz, H. & Akinbile, C.O. 2013. Recent developments of textile waste water treatment by adsorption process: A review. Inter. J. Sci Res. Knowledge 1(4): 60-73.

Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M.M. & Anderson, J.L. 2015. Fish to 2030: The role and opportunity for aquaculture. Aquac. Econ. Manag. 19(3): 282-300.

Kropfelova, L., Vymazal, J., Svehla, J. & Stichova, J. 2009. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ. Poll. J. 157: 1186-1194.

Malar, S., Sahi, S.V., Favas, P.J.C. & Venkatachalam, P. 2015. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ. Sci. Pollut. Res. 22(6): 4597- 4608.

Marlia, M.H., Nan Hamiza, S.M.M. & Nur Izzah, H.A.A. 2018. Salvinia molesta dan Pistia stratiotes sebagai agen fitoremediasi dalam rawatan air sisa kumbahan. Sains Malaysiana 47(8): 1625-1634.

Miranda, A.F., Biswas, B., Ramkumar, N., Singh, R., Kumar, J., James, A., Roddick, F., Lal, B., Subudhi, S., Bhaskar, T. & Mouradov, A. 2016. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol. Biofuels 9: 221-237.

Morrice, J.A., Danz, N.P., Regal, R.R., Kelly, J.R., Niemi, G.J., Reavie, E.D., Hollenhorst, T.P., Axler, R.P., Trebitz, A.S., Cotter, A.M. & Peterson, G.S. 2008. Human influences on water quality in Great Lakes coastal wetlands. Environmental Management 41: 347-357.

Nadarajah, S. & Flaaten, O. 2017. Global aquaculture growth and institutional quality. Marine Policy 84: 142-151.

Naylor, R.L., Williams, S.L. & Strong, D.R. 2001. Aquaculture-A gateway for exotic species. Science 294: 1655-1656.

Ng, Y.S., Samsudin, N.I.S. & Chan, D.J.C. 2017. Phytoremediation capabilities of Spirodela polyrhiza and Salvinia molesta in fish farm wastewater: A preliminary study. IOP Conf. Series: Mater. Sci. Eng. 206: 012084.

Nor Rifhan, S.M.R., Wan Ramlee, W.A.K., Syazuani, M.S., Mohd Zaini, N., Sarini, A.W., Zuraida, J. & Muhammad Izzat, R. 2015. Phytoremediation: Environmental-friendly clean up method. World Journal of Environmental Pollution 5(2): 16-22.

Rai, P.K. 2007. Wastewater management through biomass of Azolla pinnata: An eco-sustainable approach. AMBIO 36(5): 426-428.

Raju, A.R., Anitha, C.T., Sidhimol, P.D. & Rosna, K.J. 2010. Phytoremediation of domestic wastewater by using a free floating aquatic angiosperm, Lemna minor. Nature Environment and Pollution Technology 9(1): 83-88.

Schwartz, M.F. & Boyd, C.E. 1994a. Channel catfish pond effluents. Progressive Fish Culturist 56: 273-281.

Schwartz, M.F. & Boyd, C.E. 1994b. Effluent quality during harvest of channel catfish from watershed ponds. Progressive Fish-Culturist 56: 25-32.

Sharma, A. & Sachdeva, S. 2012. Azolla: Role in phytoremediation of heavy metals. Int. J. Eng. Sci. 1: 2277-9698.

Sim, C.H., Yusoff, M.K., Shutes, B., Ho, S.C. & Mansor, M. 2008. Nutrient removal in a pilot and full scale constructed wetland, Putrajaya City, Malaysia. J. Environ. Manage. 88: 307-317.

Siti Hanna, E., Maketab, M., Aznah, N.A., Khalida, M., Mohd Arif, H.M.H., Nor Othman, M. & Chelliapan, S. 2014. Water hyacinth bioremediation for ceramic industry wastewater treatment-application of rhizofiltration system. Sains Malaysiana 43(9): 1397-1403.

Stepniewska, Z., Bennicilli, R.P., Balakhnina, T.I., Szajnocha, K., Banach, A. & Wolinska, A. 2005. Potential of Azolla caroliniana for removal of Pb and Cd from wastewater. Int. Agrophys. 19: 251-255.

Valderrama, A., Tapia, J., Peñailillo, P. & Carvajal, D.E. 2012. Water phytoremediation of cadmium and copper using Azolla filiculoides Lam. in a hydroponic system. Water and Environment Journal 27(3): 293-300.

Wang, H., Zhang, H. & Cai, G. 2011. An application of phytoremediation to river pollution remediation. Procedia Environmental Sciences 10: 1904-1907.

*Corresponding author; email: azharhalim@ukm.edu.my

 

 

 

 

previous