Sains Malaysiana 48(2)(2019): 281–289
http://dx.doi.org/10.17576/jsm-2019-4802-03
Kebolehupayaan Fitoremediasi oleh Azolla
pinnata dalam Merawat Air Sisa Akuakultur
(Phytoremediation Capability by Azolla
pinnata in Aquaculture Wastewater Treatment)
FARAH DIYANA ARIFFIN1,2, AZHAR ABDUL HALIM1*, MARLIA MOHD HANAFIAH1 & NOR AZIRA RAMLEE1
1Pusat Pengajian Sains
Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaa Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Sains Kesihatan
dan Gunaan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia, Jalan Raja
Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Received: 29 March 2018/Accepted:
15 September 2018
ABSTRAK
Isu kekurangan sumber air bersih
merupakan salah satu masalah utama pada masa kini. Bahan pencemar di dalam air
merupakan antara penyumbang kepada masalah ini. Salah satu alternatif yang
utama dalam penyingkiran bahan pencemar daripada air sisa adalah melalui kaedah
fitoremediasi. Kajian ini bertujuan mengkaji kecekapan Azolla
pinnata dalam merawat air sisa menggunakan kaedah fitoremediasi.
Keberkesanan A. pinnata untuk menyerap nutrien adalah bergantung kepada
kualiti air sisa dan kuantiti A. pinnata yang digunakan. Seterusnya satu
uji kaji untuk menentukan biojisim A. pinnata selepas rawatan
fitoremediasi telah dijalankan. Dalam hasil kajian ini, ammonia dan fosfat
merupakan parameter yang utama dalam menentukan keberkesanan rawatan air sisa
akuakultur menggunakan kaedah fitoremediasi A. pinnata. Hasil kajian
menunjukkan penurunan drastik nilai ammonia apabila air sisa dirawat
menggunakan A. pinnata iaitu daripada nilai bacaan purata 7.47 ke 1.67
mg/L. Sementara itu, kepekatan fosfat juga menunjukkan penurunan ketara selepas
air sisa dirawat dengan A. pinnata daripada nilai purata 5.73 kepada
1.22 mg/L. Hasil daripada rawatan air sisa akuakultur dengan menggunakan
fitoremediasi A. pinnata dapat menunjukkan perubahan disebabkan oleh
peningkatan biojisim dengan nilai tertinggi 147.26 gram.
Kata kunci: Akuakultur; Azolla
pinnata; fitoremediasi; rawatan air sisa
ABSTRACT
The issue of lack of clean water
sources is one of the main problems today. Pollutants in the water is one of
the contributors to the problem. One of the major alternatives in the removal
of pollutants from wastewater is through phytoremediation. The objective of
this research was to determine the efficiency of phytoremediation method in
treating wastewater using Azolla pinnata. The efficacy of A.
pinnata to absorb nutrients is dependent on the quality of wastewater and
the quantity of A. pinnata. Further, an experiment to determine the A.
pinnata biomass by phytoremediation method was carried out. The results of
this study show that ammonia and phosphate were the main parameters in
determining the effectiveness of aquaculture wastewater treatment using A.
pinnata. The results showed a drastic decline in the ammonia when the
wastewater was treated with A. pinnata from the average reading value of
7.47 to 1.67 mg/L. Meanwhile, phosphate concentration also showed a drastic
decline after the wastewater was treated with A. pinnata from the
average value of 5.73 to 1.22 mg/L. The results of treatment of aquaculture
wastewater by using phytoremediation of A. pinnata was able to show
changes due to an increase in biomass with the highest value of 147.26 gram.
Keywords:
Aquaculture; Azolla
pinnata; phytoremediation: wastewater treatment
REFERENCES
Abdel-Tawwab,
M. 2006. Effect of free-floating macrophyte, Azolla pinnata on water
physico-chemistry, primary productivity, and the production of Nile Tilapia, Oreochromis
niloticus (L.), and Common Carp, Cyprinus carpio L., in fertilized
earthen ponds. J. Appl. Aquaculture 18(1): 21-41.
Akinbile,
C.O., Ogunrinde, T.A., Hasfalina, C.M. & Hamidi, A.Z. 2015.
Phytoremediation of domestic wastewaters in free water surface constructed
wetlands using Azolla pinnata. Int. J. Phytorem. 18(1): 54-61.
Akinbile,
C.O. & Yusoff, M.S. 2012. Assessing Water Hyacinth (Eichhornia crassipes)
and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater
treatment. Int. J. Phytorem. 14(3): 201-211.
Almeida,
C.M.R., Dias, A.C., Mucha, A.P., Bordalo, A.A. & Vanconcelos, M.T.S.D.
2007. Influence of surfactant on the cu phytoremediation potential of a salt
marsh plant. Chemosphere 75: 13-140.
APHA. 1999. Standard
Methods for the Examination of Water and Wastewater. Edisi ke-20.
Washington: American Public Health Association.
Arora, A.,
Saxena, S. & Sharma, D.K. 2006. Tolerance and phytoaccumulation of chromium
by three Azolla species. World J. Microbiol. Biotechnol. 22:
97-100.
Aziz, H.A.,
Adlan, M.N., Zahari, M.S.M. & Alias, S. 2004. Removal of ammoniacal
nitrogen (N–NH3) from municipal solid waste leachate
by using activated carbon and limestone. Waste Manage. Res. 22: 371-375.
Begum, A.
& Harikrishna, S. 2010. Bioaccumulation of trace metals by aquatic plants. Internat.
J. Chem. Tech. Research 2: 250-254.
Boyd, C.E. 2003. Guidelines
for aquaculture effluent management at the farm-level. Aquaculture 226:
101-112.
Boyd, C.E.
& Queiroz, J. 2001. Feasibility of retention structures, settling basins,
and best management practices in effluent regulation for Alabama channel
catfish farming. Reviews in Fisheries Science 9: 43-67.
Boyd, C.E.
& Tucker, C.S. 1998. Pond Aquaculture Water Quality Management.
Boston: Kluwer Academic Publishers.
Carlozzi, P.
& Padovani, G. 2016. The aquatic fern Azolla as a natural
plant-factory for ammonia removal from fish-breeding fresh wastewater. Environ.
Sci. Pollut. Res. 23(9): 8749-8755.
Clemens, S.,
Palmgren, M.G. & Krämer, U. 2002. A long way ahead: Understanding and
engineering plant metal accumulation. Trends Plant Sci. 7: 309-315.
Deshmukh,
A.A., Bandela, N.N., Chavan, J.R. & Nalawade, P.M. 2013. Studies on
potential use of water hyacinth, Pistia and Azolla for municipal
waste water treatment. Indian J. Appl. Res. 3(11): 226-228.
Ebbs, S.D.,
Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R. & Kochian, L.V. 1997.
Phytoextraction of cadmium and zinc from a contaminated site. J. Environ.
Quali. 26: 1424-1430.
FAO - Food
and Agriculture Organization of the United Nations. 2016. The State of World
Fisheries and Aquaculture. Rome.
Fazilah,
A.M., Chai, T.T., Azman, A.S. & Dayangku, D.M. 2015. Evaluation of the
phytoremediation potential of two medicinal plants. Sains Malaysiana 44(4):
503-509.
Ferdoushi,
Z., Haque, F., Khan, S. & Haque, M. 2008. The effects of two aquatic
floating macrophytes (Lemna and Azolla) as biofilters of nitrogen
and phosphate in fish ponds. Turk. J. Fish. Aquat. Sc. 8: 253-258
Geenens, D.,
Bixio, B. & Thoeye, C. 2010. Combined ozone-activated sludge treatment of
landfill leachate. Water Sci. Technol. 44: 359-365.
Gross, A.,
Boyd, C.E. & Wood, C.W. 2000. Nitrogen transformations and balance in
channel catfish ponds. Aquacultural Engineering 24: 1-14.
HACH. 2007. DR
2800 Spectrophotometer: Procedures Manual. Edisi Ke-2. Jerman: Hach
Company.
Hechler,
W.D. & Dawson, J.O. 1995. Factors affecting nitrogen fixation in Azolla
caroliniana. Transactions of the Illinois State Academy of Science 88(3&4):
97-107.
Henry-Silva,
G.G. & Camargo, A.F.M. 2006. Efficiency of aquatic macrophytes to treat
Nile Tilapia pond effluents. Sci. Agric. 63(5): 433-438.
Iwao, W.
& Corazon, R. 1990. Phosphorus and nitrogen contents of Azolla grown
in the Philippines. Soil Science and Plant Nutrition 36(2): 319-331.
Jang, J.D.,
Barford, J.P., Lindawati, K. & Renneberg, R. 2004. Application of
biochemical oxygen demand (BOD) biosensor for optimization of biological carbon
and nitrogen removal from synthetic wastewater in a sequencing batch reactor
system. Biosens. Bioelectron. 19: 805-812.
Kamaruddin,
M.A., Mohd Suffian, Y., Abdul Aziz, H. & Akinbile, C.O. 2013. Recent
developments of textile waste water treatment by adsorption process: A review. Inter.
J. Sci Res. Knowledge 1(4): 60-73.
Kobayashi,
M., Msangi, S., Batka, M., Vannuccini, S., Dey, M.M. & Anderson, J.L. 2015.
Fish to 2030: The role and opportunity for aquaculture. Aquac. Econ. Manag. 19(3):
282-300.
Kropfelova,
L., Vymazal, J., Svehla, J. & Stichova, J. 2009. Removal of trace elements
in three horizontal sub-surface flow constructed wetlands in the Czech
Republic. Environ. Poll. J. 157: 1186-1194.
Malar, S.,
Sahi, S.V., Favas, P.J.C. & Venkatachalam, P. 2015. Mercury
heavy-metal-induced physiochemical changes and genotoxic alterations in water
hyacinths [Eichhornia crassipes (Mart.)]. Environ. Sci. Pollut. Res. 22(6):
4597- 4608.
Marlia,
M.H., Nan Hamiza, S.M.M. & Nur Izzah, H.A.A. 2018. Salvinia molesta dan Pistia stratiotes sebagai agen fitoremediasi dalam rawatan air sisa
kumbahan. Sains Malaysiana 47(8): 1625-1634.
Miranda,
A.F., Biswas, B., Ramkumar, N., Singh, R., Kumar, J., James, A., Roddick, F.,
Lal, B., Subudhi, S., Bhaskar, T. & Mouradov, A. 2016. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol. Biofuels 9:
221-237.
Morrice,
J.A., Danz, N.P., Regal, R.R., Kelly, J.R., Niemi, G.J., Reavie, E.D.,
Hollenhorst, T.P., Axler, R.P., Trebitz, A.S., Cotter, A.M. & Peterson,
G.S. 2008. Human influences on water quality in Great Lakes coastal wetlands. Environmental
Management 41: 347-357.
Nadarajah,
S. & Flaaten, O. 2017. Global aquaculture growth and institutional quality. Marine Policy 84: 142-151.
Naylor,
R.L., Williams, S.L. & Strong, D.R. 2001. Aquaculture-A gateway for exotic
species. Science 294: 1655-1656.
Ng, Y.S.,
Samsudin, N.I.S. & Chan, D.J.C. 2017. Phytoremediation capabilities of Spirodela
polyrhiza and Salvinia molesta in fish farm wastewater: A
preliminary study. IOP Conf. Series: Mater. Sci. Eng. 206: 012084.
Nor Rifhan,
S.M.R., Wan Ramlee, W.A.K., Syazuani, M.S., Mohd Zaini, N., Sarini, A.W.,
Zuraida, J. & Muhammad Izzat, R. 2015. Phytoremediation:
Environmental-friendly clean up method. World Journal of Environmental
Pollution 5(2): 16-22.
Rai, P.K.
2007. Wastewater management through biomass of Azolla pinnata: An
eco-sustainable approach. AMBIO 36(5): 426-428.
Raju, A.R.,
Anitha, C.T., Sidhimol, P.D. & Rosna, K.J. 2010. Phytoremediation of
domestic wastewater by using a free floating aquatic angiosperm, Lemna minor. Nature Environment and Pollution Technology 9(1): 83-88.
Schwartz,
M.F. & Boyd, C.E. 1994a. Channel catfish pond effluents. Progressive
Fish Culturist 56: 273-281.
Schwartz,
M.F. & Boyd, C.E. 1994b. Effluent quality during harvest of channel catfish
from watershed ponds. Progressive Fish-Culturist 56: 25-32.
Sharma, A.
& Sachdeva, S. 2012. Azolla: Role in phytoremediation of heavy
metals. Int. J. Eng. Sci. 1: 2277-9698.
Sim, C.H.,
Yusoff, M.K., Shutes, B., Ho, S.C. & Mansor, M. 2008. Nutrient removal in a
pilot and full scale constructed wetland, Putrajaya City, Malaysia. J.
Environ. Manage. 88: 307-317.
Siti Hanna,
E., Maketab, M., Aznah, N.A., Khalida, M., Mohd Arif, H.M.H., Nor Othman, M.
& Chelliapan, S. 2014. Water hyacinth bioremediation for ceramic industry
wastewater treatment-application of rhizofiltration system. Sains Malaysiana 43(9): 1397-1403.
Stepniewska,
Z., Bennicilli, R.P., Balakhnina, T.I., Szajnocha, K., Banach, A. &
Wolinska, A. 2005. Potential of Azolla caroliniana for removal of Pb and
Cd from wastewater. Int. Agrophys. 19: 251-255.
Valderrama,
A., Tapia, J., Peñailillo, P. & Carvajal, D.E. 2012. Water phytoremediation
of cadmium and copper using Azolla filiculoides Lam. in a hydroponic
system. Water and Environment Journal 27(3): 293-300.
Wang, H., Zhang, H. &
Cai, G. 2011. An application of phytoremediation to river pollution
remediation. Procedia Environmental Sciences 10: 1904-1907.
*Corresponding author;
email: azharhalim@ukm.edu.my
|