Sains Malaysiana 48(2)(2019): 329–335
http://dx.doi.org/10.17576/jsm-2019-4802-09
Oxidative Stability of Crude and Refined Kenaf (Hibiscus
cannabinus L.) Seed Oil during Accelerated Storage
(Kestabilan Oksidatif bagi Minyak Biji Kenaf (Hibiscus
cannabinus L.) Mentah dan Bertapis semasa Storan Pecut)
SOOK CHIN CHEW1, CHIN PING TAN2 & KAR LIN NYAM1*
1Department of Food
Science and Nutrition, Faculty of Applied Sciences, UCSI University,
56000 Kuala Lumpur, Federal Territory, Malaysia
2Department of Food
Technology, Faculty of Food Science and Technology, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
Received: 21 September
2017/Accepted: 31 October 2018
ABSTRACT
Kenaf seed oil has been suggested to
be used as edible oil but there is limited information available about the
oxidative stability of refined kenaf seed oil. An oxidative stability test was
performed on crude and refined kenaf seed oil under accelerated storage at 65ºC
for 24 days. The results showed that refined oil underwent higher oxidation
than the crude oil, as indicated by the peroxide value (40.55 meq/kg),
p-Anisidine value (18.78) and total oxidation value (99.87) in refined oil at
day 24. There was no significant difference in the free fatty acid value in
refined oil during the accelerated storage. Oleic acid remained the most
abundant in the fatty acid composition of kenaf seed oil, followed by linoleic
acid and palmitic acid during storage. The unsaturated fatty acids decreased
slightly coupled with a slight increase in the saturated fatty acids in kenaf
seed oil during storage. Refining process decreased the oxidative stability of
kenaf seed oil, but the refined kenaf seed oil was able to maintain good
quality in free fatty acid value and fatty acid composition.
Keywords: Linoleic acid; oleic acid;
refining process; total oxidation value
ABSTRAK
Minyak biji kenaf telah dicadangkan
untuk digunakan sebagai minyak makan tetapi terdapat maklumat yang terhad
tentang kestabilan oksidatif bagi minyak biji kenaf bertapis. Ujian kestabilan
oksidatif telah dilakukan ke atas minyak biji kenaf mentah dan bertapis bawah
dipercepatkan penyimpanan pada 65°C selama 24 hari. Hasil kajian menunjukkan
minyak bertapis menjalani pengoksidaan lebih tinggi daripada minyak mentah
seperti yang ditunjukkan oleh nilai peroksida (40.55 meq/kg), p-Anisidine nilai
(18.78) dan jumlah nilai pengoksidaan (99.87) dalam minyak disempurnakan pada
hari ke-24. Tiada perbezaan yang signifikan dalam lemak nilai asid dalam minyak
yang ditapis semasa penyimpanan dipercepatkan. Asid oleik kekal yang paling
banyak, diikuti oleh asid linoleik dan asid palmitik semasa penyimpanan. Asid
lemak tak tepu menurun sedikit ditambah pula dengan sedikit peningkatan dalam
asid lemak tepu dalam minyak biji kenaf semasa penyimpanan. Proses penapisan
menurun kestabilan oksidatif bagi minyak biji kenaf, tetapi minyak benih kenaf
yang disucikan dapat mengekalkan kualiti yang baik di bebas nilai asid lemak
dan lemak komposisi asid.
Kata
kunci: Asid linoleik; asid oleik; penapisan proses; pengoksidaan jumlah nilai
REFERENCES
AOCS. 2000.
Peroxide value acetic acid-chloroform Method Cd 8-53. In Official Methods
and Recommended Practices of the American Oil Chemists’ Society, edited by
Firestone, D. Champaign: AOCS Press.
AOCS. 1998a.
Free fatty acids in crude and refined oils method 26.042. In Official
Methods and Recommended Practices of the American Oil Chemists’ Society, edited
by Firestone, D. Champaign: AOCS Press.
AOCS. 1998b. p-Anisidine value method Cd 18-90. In Official Methods and
Recommended Practices of the American Oil Chemists’ Society, edited by
Firestone, D. Champaign: AOCS Press.
Besbes, S.,
Blecker, C., Deroanne, C., Lognay, G., Drira, N-E. & Attia, H. 2004.
Quality changes and oxidative stability of date seed oil during storage. Food
Science and Technology International 10: 333-338.
Brinkmann,
B. 2000. Quality criteria of industrial frying oils and fats. European
Journal of Lipid Science and Technology 102: 539-541.
Chew, S.C.
& Nyam, K.L. 2016. Oxidative stability of microencapsulated kenaf seed oil
using co-extrusion technology. Journal of American Oil Chemists’ Society 93(4):
607-615.
Chew, S.C.,
Tan, C.P. & Nyam, K.L. 2017. Comparative study of crude and refined kenaf (Hibiscus
cannabinus L.) seed oil during accelerated storage. Food Science and
Biotechnology 26(1): 63-69.
Chew, S.C.,
Tan, C.P., Long, K. & Nyam, K.L. 2016. Effect of chemical refining on the
quality of kenaf (Hibiscus cannabinus) seed oil. Industrial Crops and
Products 89: 59-65.
Chew, S.C.,
Tan, C.P., Long, K. & Nyam, K.L. 2015. In-vitro evaluation of kenaf
seed oil in chitosan coated-high methoxyl pectin-alginate microcapsules. Industrial
Crops and Products 76: 230-236.
Cho, S., Kim, J., Han, D.,
Lim, H.J., Yoon, M., Park, J., Yang, H., Lee, S.H., Noh, B.Y., Park, E., Yoo,
H., Baek, J. & Shin, E.C. 2015. Thermal oxidative stability of corn oil in
ultra-high temperature short-time processed seasoned layer. Food Science and
Biotechnology 24: 947-953.
Cintra, D.E., Costa, A.V., Peluzio Mdo, C.,
Matta, S.C., Silva, M.J. & Costa, N.M. 2006. Lipid profile of rats fed
high-fat diets based on flaxseed, peanut, trout or chicken skin. Nutrition 22:
197-205.
Coetzee, R., Labuschagne,
M.T. & Hugo, A. 2008. Fatty acid and oil variation in seed from kenaf (Hibiscus
cannabinus L.). Industrial Crops and Products 27: 104-109.
Esuoso, K.O. &
Odetokun, S.M. 1995. Proximate chemical composition and possible industrial
utilization of Biphiasapida seed oils. Rivista Italina Delle Sostanze
Grasse 72: 311-313.
Ghazani, S.M.,
García-Llatas, G. & Marangoni, A.G. 2013. Minor constituents in canola oil
processed by traditional and minimal refining methods. Journal of American
Oil Chemists’ Society 90: 743-756.
Grill, J.M., Ogle, J.W.
& Miller, A.M. 2006. An efficient and practical system for the catalytic
oxidation of alcohols, aldehydes, and α, β-unsaturated carboxylic
acids. Journal of Organic Chemistry 71: 9291-9296.
Gutierrez, F., Arnaud,
T. & Garrido, A. 2011. Contribution of polyphenols to the oxidative
stability of virgin olive oil. Journal of the Science of Food and
Agriculture 81: 1463- 1470.
Iqbal, S. & Bhanger,
M.I. 2007. Stabilization of sunflower oil by garlic extract during accelerated
storage. Food Chemistry 100: 246-254.
Kaco, H., Zakaria, S.,
Razali, N.F., Chia, C.H., Zhang, L. & Jani, S.M. 2014. Properties of
cellulose hydrogel from kenaf core prepared via pre-cooled dissolving method. Sains
Malaysiana 43(8): 1221-1229.
Kreps, F., Vrbiková, L.
& Schmidt, Š. 2014. Influence of industrial physical refining on
tocopherol, chlorophyll and beta-carotene content in sunflower and rapeseed
oil. European Journal of Lipid Science and Technology 116: 1572-1582.
Kumar, P.K.P. &
Krishna, A.G.G. 2014. Physico-chemical characteristics and nutraceutical
distribution of crude palm oil and its fractions. Grasas y Aceites 65:
e018.
Ng, S.K., Tee, A.N.,
Lai, C.L.E., Tan, C.P., Long, K. & Nyam, K.L. 2015.
Anti-hypercholesterolemic effect of kenaf (Hibiscus cannabinus L.) seed
on high-fat diet Sprague Dawley rats. Asian Pacific Journal of Tropical
Medicine 8(1): 6-13.
Nor, F.M., Mohamed, S.,
Idris, N.A. & Ismail, R. 2008. Antioxidative properties of Pandanus
amaryllifolius leaf extracts in accelerated oxidation and deep frying
studies. Food Chemistry 110: 319-327.
Nyam, K.L., Tang, J.L.K.
& Long, K. 2016. Anti-ulcer activity of Hibiscus cannabinus and Hibiscus
sabdariffa seeds in ulcer-induced rats. International Food Research
Journal 23(3): 1164-1172.
Nyam, K.L., Tan, C.H.
& Long, K. 2015. Effect of microwave pretreatment on stability of kenaf (Hibiscus
cannabinus L.) seed oil upon accelerated storage. International Food Research
Journal 22(5): 1898-1905.
Nyam, K.L., Wong, M.M.,
Long, K. & Tan, C.P. 2013. Oxidative stability of sunflower oils
supplemented with kenaf seeds extract, roselle seeds extract and roselle
extract, respectively under accelerated storage. International Food Research
Journal 20(2): 695-701.
Nyam, K.L., Tan, C.P.,
Lai, O.M., Long, K. & Che Man, Y.B. 2009. Physicochemical properties and
bioactive compounds of selected seed oils. LWT- Food Science and Technology 42(8):
1396-1403.
O’Connor, C.J., Lal, S.N.D.
& Eyres, L. 2007. Handbook of Australasian Edible Oils. Auckland:
Oils and Fats Specialist Group of NZIC.
Richards, A.,
Wijesunderaa, C. & Salisbury, P. 2005. Evaluation of oxidative stability of
canola oils by headspace analysis. Journal of American Oil Chemists’ Society 82: 869-874.
Vaisali, C., Charanyaa,
S., Belur, P.D. & Regupathi, I. 2015. Refining of edible oils: A critical
appraisal of current and potential technologies. International Journal of
Food Science and Technology 50: 13-23.
Wan, P.J. 1995.
Accelerated stability methods. In Methods to Assess Quality and Stability of
Oils and Fat-Containing Foods, edited by Warner, K. & Eskin, N.A.M.
Champaign: AOCS Press.
Zacchi, P. & Eggers,
R. 2008. High-temperature pre-conditioning of rapeseed: A polyphenol-enriched
oil and the effect of refining. European Journal of Lipid Science and
Technology 110: 111-119.
Zakaria, S., Roslan, R.,
Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014. Characterization of
residue from EFB and kenaf core fibres in the liquefaction process. Sains
Malaysiana 43(3): 429-435.
*Corresponding author; email:
nyamkl@ucsiuniversity.edu.my
|