Sains Malaysiana 48(2)(2019): 369–375
http://dx.doi.org/10.17576/jsm-2019-4802-14
Growth
and Magnetic Behaviours of La0.7Sr0.3MnO3
Nanoparticles Synthesized via Thermal
Treatment
Method
(Tingkah Laku Pertumbuhan dan Magnetik Nanopartikel La0.7Sr0.3MnO3 Disintesis melalui Kaedah Rawatan Terma)
PAN
KAI YAP, ABDUL HALIM SHAARI*, HUSSEIN BAQIAH, CHEN SOO KIEN, JUMIAH HASSAN,
MOHD MUSTAFA AWANG KECHIK, LIM KEAN PAH & ZAINAL ABIDIN TALIB
Department of Physics, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 16 July 2018/Accepted: 20
September 2018
ABSTRACT
La0.7Sr0.3MnO3
(LSMO) nanoparticles were synthesized by thermal treatment method
using water as solvent and polyvinyl pyrollidone (PVP) as capping
agent. The as prepared precursor was calcined at various temperatures
ranging from 500°C to 1000°C. Structural characterization
using X-rays diffractions (XRD) showed that the LSMO nanoparticles,
calcined at temperature ≥
600°C, have single phase of La0.7Sr0.3MnO3
with rhombohedral crystal structure without any secondary phases
being detected. The average particle size of nanoparticles increased
gradually from 23 to 163 nm for samples calcined at 500 to 1000°C.
Magnetic measurement at room temperature using vibrating sample
magnetometer (VSM) indicated that the LSMO nanoparticles had soft
ferromagnetic behaviour with coercivity ranged from 3.43 to 33.78
G. The magnetic saturation (Ms) of nanoparticles increased with
the increment of particle size. From Electron Spin Resonance (ESR)
measurement, the g-value of LSMO nanoparticles increased with the
increasing of calcination temperature. The ESR indicated a coexistence
of ferromagnetic and paramagnetic phases in LSMO nanoparticles below
Curie temperature (Tc).
The Tc
was in the range of 50-80°C for LSMO calcined at 500°C and
it is in the range of 80-110°C for LSMO calcined 600, 700, 800,
900, and 1000°C.
Keywords:
Electron resonance; magnetic properties; nanostructures; Rietveld analysis;
thermal treatment
ABSTRAK
Zarah nano La0.7Sr0.3MnO3
(LSMO) telah disintesis melalui kaedah rawatan terma menggunakan
air sebagai pelarut dan polivinil pirolidon (PVP) sebagai agen penyalutan.
Prekursor yang disediakan telah melalui pengkalsinan pada suhu yang
berbeza dari 500°C hingga 1000°C. Pencirian struktur menggunakan
pembelauan sinar-X (XRD) mendedahkan bahawa zarah nano LSMO, dikalsinkan
pada suhu ≥
600°C,
mempunyai struktur fasa tunggal tanpa sebarang fasa sekunder yang
dikesan. Purata saiz zarah bagi zarah nano meningkat secara beransur-ansur
daripada 23 hingga 163 nm untuk sampel yang dikalsin pada suhu 500
hingga 1000°C. Pengukuran sifat magnet pada suhu bilik menggunakan
magnetometer sampel bergetar (VSM) menunjukkan bahawa zarah nano
LSMO mempunyai kelakuan feromagnet lembut dengan koersiviti berjulat
antara 3.43 hingga 33.78 G. Ketepuan magnet (Ms) zarah nano meningkat
dengan kenaikan saiz zarah. Daripada pengukuran resonans spin elektron
(ESR), nilai g bagi zarah nano LSMO meningkat dengan peningkatan
suhu kelembapan pengkalsinan. ESR juga menunjukkan kewujudan bersama
fasa feromagnet dan paramagnet dalam zarah nano LSMO di bawah suhu
Curie (Tc).
Tc
berada dalam lingkungan antara 50-80°C untuk LSMO yang dikalsin
pada suhu 500°C dan ia berada dalam lingkungan antara 80-110°C
untuk LSMO yang dikalsinkan pada suhu 600, 700, 800, 900 dan 1000°C.
Kata
kunci: Analisis Rietveld; nanostruktur; rawatan terma; resonans elektron; sifat
magnetik
REFERENCES
Andrade,
V.M., Caraballo Vivas, R.J., Pedro, S.S.,
Tedesco, J.C.G., Rossi, A.L., Coelho, A.A., Rocco, D.L. & Reis,
M.S. 2016. Magnetic and magnetocaloric properties of
La0.6Ca0.4MnO3 tunable by particle
size and dimensionality. Acta
Materialia 102: 49-55.
Daengsakul, S., Thomas, C., Siri, S., Thomas, I.,
Amornkitbamrung, V., Maensiri, S.
& Mongkolkachit, C. 2009a. A
simple thermal decoposition synthesis,
magnetic properties and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles.
Applied Physics A: Materials Science & Processing 96:
691-699.
Daengsakul, S., Thomas, I., Mongkolkachit,
C., Siri, S., Amornkitbamrung, V., Maensiri, S. & Thomas, C. 2009. Magnetic
and cytotoxicity properties of La1-xSrxMnO3 (0<×<0.5)
nanoparticles prepared by a simple thermal hyro-decomposition.
Nanoscle Research Letter 4:
839-845.
Drofenik, V. & Uskokovie,
M. 2007. Four novel co-precipitation procedures for the synthesis
of lanthanum strontium manganites. Materials
and Design 28: 667-672.
Du,
Y.K., Mou, Z.G., Hua, N.P., Jiang, L.
& Yang, P. 2006. Thermal decomposition behaviors of PVP coated
on platinum nanoparticles. Journal of Applied Polymer Science
99: 23-26.
Dutta,
A., Gayathri, N. & Ranganathan, R.
2003. Effect of particle size on the magnetic and transport properties
of La0.875Sr0.125MnO3.
Physical Review B 68: 54432-54438.
Dyakonov, V.A., Ślawska-Waniewska,
N., Nedelko, E., Zubov,
V., Mikhaylov, K., Piotrowski, A., SzytuŁ,
S.B., Bazela, W., Kravchenko,
Z., Aleshkevich, P., Pashchenko,
A., Dyakonov, K., Varyukhin,
V. & Szymczaka, H. 2010. Magnetic,
resonance and transport properties of nanopowder
of La0.7Sr0.3MnO3 manganites. Journal of Magnetism and Magnetic Materials
322(20): 3072-3079.
Ehi-Eromosele, C.O., Ita,
B.I., Iweala, E.E.J., Ogunniran,
K.O., Adekoya, J.A. & Ehi-Eromosele,
F.E. 2016. Structural and magnetic characterization of La0.7Sr0.3MnO3 nanoparticles
obtained by the citrate-gel combustion method: Effect of fuel to
oxidizer ratio. Ceramics International 42(1, Part A): 636-643.
Fujishiro, H., Fukase,
T. & Ikebe, M. 1998. Charge
ordering and sound velocity anomaly in LaxSr1-XMnO3 (×≥0.5).
Journal of the Physical Society of Japan 67: 2582-2585.
Ghosh,
A., Gulnar, A.K., Suri, A.K. & Sahu, A.K. 2005. Synthesis and characterization of lanthanum
strontium manganite. Scripta
Materialia 52: 1305-1309.
Gupta,
A. & Sun, J.Z. 1999. Spin-polarized transport and magnetoresistance
in magnetic oxides. Journal of Magnetism and Magnetic Materials
200(1-3): 24-43.
Hwang,
H.Y., Cheong, S.W., Ong, N.P. & Batlogg,
B. 1996. Spin-polarized intergrain tunneling
in La2/3Sr1/3MnO3.
Physical Review Letters 77(10): 2041-2044.
Karthikeyan, S. & Ravi, A. 2014. Effect of calcination
temperature on La0.7Sr0.3MnO3 nanoparticles
synthesized with modified sol-gel route. Physics Procedia 54:
45-54.
Lee,
S.M., Chon, G.B., Lee, C.G., Koo, B.H. & Lim, H.S. 2006. Hydrothermal
reaction for the preparation of La0.7Ca0.3MnO3 and
La0.7Sr0.3MnO3.
Journal of the Korean Physical Society 48: 1409-1412.
Lopez-Quintela, M.A., Rivas, J., Rivadulla,
F. & Hueso, L.E. 2003. Intergranular
magnetoresistance in nanomanganites. Nanotechnology
14: 212-219.
Millis,
A.J., Littlewood, P.B. & Shramin,
B.I. 1995. Double exchange alone does not explain the resistivity
of La2/3Sr1/3MnO3.
Physical Review Letters 74: 5144-5147.
Moradi, J., Ghazi, M.E., Ehsani,
M.H. & Kameli, P. 2014. Structural
and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles
prepared via a facile microwave-assisted method. Journal of Solid
State Chemistry 215: 1-7.
Naseri, M.G., Elias, B.S., Mansor,
H., Abdul Halim, S. & Hossein Abasstabar,
A. 2011a. Synthesis and characterization of zinc ferrite nanoparticles
by a thermal treatment method. Solid State Communications 151(14-15):
1031-1035.
Naseri, M.G., Elias B.S., Hossein Abbastabar, A., Mansor, H. &
Abdul Halim, S. 2011b. Simple preparation and characterization of
nickel ferrite nanocrystals by a thermal treatment method. Powder
Technology 212(1): 80-88.
Pan,
K.Y., Lim, K.P., Daud, W.M., Chen, S.K.
& Halim, S.A. 2012. Effect of sintering temperature
on microstructure, electrical and magnetic properties of La0.85K0.15MnO3 prepared
by sol-gel method. Journal of Superconductivity and Novel
Magnetism 25: 1177-1183.
Papaefthymiou, G.C. 2009. Nanoparticle magnetism.
Nano Today 4(5): 438-447.
Rajagopal, R., Mona, J., Kale, S.N., Bala, T., Pasricha, R., Poddar, P., Sastry, M., Prasad,
B.L.V., Kundaliya, D.C. & Ogale,
S.B. 2006. La0.7Sr0.3MnO3 nanoparticles
coated with fatty amine. Applied Physics Letters 89(2): 23107.
Shivakumara, C., Prakash, A.S., Vasanthacharya,
N.Y. & Belakki, M.B. 2007. Rapid
synthesis of ferromagnetic La1-XNaxMnO3 (0.00
≤×≤ 0.25) by the Solution Combustion Method.
Journal of the American Ceramic Society 90: 3852-3858.
Teng, F. 2009. Hydrothermal
synthesis and their catalytic properties of manganites
nanowires. Solid State Sciences 11: 1643-1648.
Thorat, N.D., Pawar,
S.H., Barick, K.C., Betty, C.A., Ningthoujam,
R.S. & Shinde, K.P. 2012. Polyvinyl
alcohol: An efficient fuel for synthesis of superparamagnetic LSMO
nanoparticles for biomedical apllication.
Dalton Transactions 41: 3060-3071.
Urushibara, A., Arima,
T., Asamitsu, A., Kido, G., Tokura,
Y. & Moritomo, Y. 1995. Insulator-metal
transition and giant magnetoresistance in La1-XSrxMnO3.
Physical Review B 51: 14103-14109.
Varma, A. & Gaur, G.D. 2006.
Sintering temperature effect on electrical transports and magnetoresistance
of nanophasic La0.7Sr0.3MnO3.
Journal of Physics: Condensed Matter 18: 8837-8846.
Wu, J.H. & Lin, J.G. 2006. Study
on the phase separation of La0.7Sr0.3MnO3
nanoparticles by electron magnetic resonance. Journal of Magnetism
and Magnetic Materials 304(1): e7-e9.
Zahari, R.M., Shaari,
A.H., Abbas, Z., Baqiah, H., Chen, S.K.,
Lim, K.P. & Kechik, M.M.A. 2017. Simple
preparation and characterization of bismuth ferrites nanoparticles
by thermal treatment method. Journal of Materials Science: Materials
in Electronics 28(23): 17932-17938.
Zener, C. 1951. Interaction between
the d-Shell in the transition metals. II. Ferromagnetic compounds
of manganese with perovskite structure. Physical Review 82:
403.
Zhang, Y., Weiwei,
P., Dong, J., Wang, Z., Liu, Q. & Wang, J. 2013. Morphology
dependence of electron spin resonance investigation
on structure controllable hollow La0.7Sr0.3MnO3
nanofibres. Journal of Physics D: Applied Physics 46(10):
105001.
*Corresponding author; email:
ahalim@upm.edu.my
|