Sains Malaysiana 48(2)(2019): 377–383
http://dx.doi.org/10.17576/jsm-2019-4802-15
Investigation of Simple Portable Telescope
Validity for Muon Detection Inside Metals
(Kajian Kesahihan Teleskop Mudah Alih untuk
Mengesan Muon di dalam
Logam)
RASHA N.I.
ALTAMEEMI1,
NURUL
SHAZANA
ABDUL
HAMID1*,
WAN
MOHD
AIMRAN
WAN
MOHD
KAMIL1,
SAAD
M.
SALEH
AHMED2
& GERI GOPIR1
1School of Applied Physics, Faculty
of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Deparment of Physics, Faculty of
Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
Received: 14 April 2018/Accepted:
4 October 2018
ABSTRACT
Muons produced in the atmosphere
by cosmic rays are preferred over gamma rays, X-rays and fast protons
for the detection of metals in the study of radiography. An alternative
method for metals detection involving portable and relatively cheap
Geiger-Muller counters are proposed. The objective of this study
was to investigate the validity of using a handmade muon telescope
with a small solid angle for the detection of muons inside the metals.
This experiment was carried out at Universiti Kebangsaan Malaysia, Bangi (101.78º E, 2.92º N
and elevation 30 m). Measurement of muons was conducted in the vertical
direction using 1 set of muon telescopes (MT)
consisting of coaxial Geiger-Muller (GM) counters. Different metals
- lead (Pb), zinc (Zn) and aluminium
(Al) - were used as absorbers with different thickness to observe
its influence on the count rate of muons. The efficiency of the
experimental setup was evaluated using statistical methods and by
obtaining sufficient number of muon detection events to describe
the physics of the muon interaction with the metals. Based on the
Rossi curve obtained for each metal, the transition point was estimated
as follows: 1.5 cm for Pb, 4.0 cm for
Zn, and 9.0 cm for Al. The results showed that the proposed alternative
setup was adequate for detecting muons and therefore have the potential
to be further developed.
Keywords: Geiger-Muller counters;
metal sheets; muon telescope; Rossi curve
ABSTRAK
Muon yang dihasilkan dalam atmosfera oleh sinar kosmik adalah lebih
diutamakan daripada sinar gama, sinar-x dan
proton berkelajuan tinggi sebagai pengesan logam dalam kajian radiografi.
Satu kaedah
alternatif untuk mengesan logam yang melibatkan penghitung Geiger-Muller
mudah alih dan lebih murah
dicadangkan. Objektif
kajian ini adalah
untuk mengkaji
kesahihan menggunakan teleskop muon dengan sudut
pejal yang kecil untuk pengesanan muon di dalam logam. Uji
kaji ini telah dijalankan di Universiti Kebangsaan Malaysia, Bangi (101.78º E, 2.92º N
pada ketinggian 30 m). Pengukuran muon telah dijalankan pada arah menegak menggunakan
1 set teleskop muon (TM)
yang terdiri daripada
sepaksi penghitung Geiger-Muller
(GM).
Logam berbeza
seperti plumbum (Pb), zink (Zn) dan aluminium (Al) telah digunakan sebagai penyerap dengan ketebalan berbeza untuk melihat
pengaruhnya terhadap
kadar kiraan muon. Persediaan
percubaan uji kaji
dinilai menggunakan
kaedah statistik dan dengan mendapatkan
bilangan kejadian
pengesanan muon yang mencukupi untuk menerangkan interaksi
muon dengan logam. Berdasarkan
lengkung Rossi yang diperoleh
untuk setiap
logam, titik peralihan
dianggarkan seperti
berikut: 1.5 cm untuk Pb, 4.0 cm bagi Zn dan 9.0 cm bagi Al. Keputusan menunjukkan bahawa persediaan alternatif yang dicadangkan mencukupi
untuk mengesan muon dan berpotensi untuk dibangunkan.
Kata kunci: Kepingan logam; lengkung Rossi; penghitung Geiger-Muller; teleskop
muon
REFERENCES
Altameemi, R.N.I. & Gopir,
G. 2016. Effect of copper and aluminium
on the event rate of cosmic ray muons at ground level in Bangi,
Malaysia. AIP Conference Proceedings 2016 1784: 040005.
Antonuccio, V., Bandieramonte,
M., Becciani, U., Bonanno,
D.L., Bonanno, G., Bongiovanni, D., Fallica, P.G., Garozzo, S., Grillo, A., Rocca, P.La., Leonora,
E., Longhitano, F., Presti,
D.Lo., Marano,
D., Parasole, O., Pugliatti, C., Randazzo, N., Riggi, F. & Valvo, G. 2017. The muon portal project: Design and construction
of a scanning portal based on muon tomography. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 845: 322-325.
Ashnina, H.M.A. 2012. Effect of sheilding building on muon events at ground level. MSc Thesis,
School of Physics. Bangi: Universiti Kebangsan Malaysia (Unpublished).
Bogdanov, A.G., Burkhardt, H., Ivanchenko, V.N.,
Kelner, S.R., Kokoulin,
R.P., Maire, M., Rybin,
A.M. & Urban, L. 2006. Geant4 simulation of production and interaction
of Muons. IEEE Transactions on Nuclear Science 53(2): 513-519.
Bonal, N.D., Iv, A.T.C., Cieslewski, G., Dorsey,
D.J., Foris, A., Green, J.A., Miller,
T.J., Preston, L.A., Roberts, B.L., Schwellenbach,
D. & Su, J.C. 2016. Using muons to image the subsurface. Sandia
Report. pp. 1-64.
Bonal, N.D., Preston, L.A., Dorsey, D.J., Schwellenbach,
D., Dreesen, W. & Green, J.A. 2015.
Muon Technology for Geophysical Applications. Sandia National
Laboratories (SNL-NM). Albuquerque, NM (United States).
Bonolis, L. 2011. Walther Bothe and Bruno Rossi:
The birth and development of coincidence methods in cosmic-ray physics.
Am. J. Phys. 79(11):1133-1150.
Borozdin, K.N., Hogan, G.E., Morris, C., Priedhorsky, W.C., Saunders, A., Schultz, L.J. & Teasdale,
M.E. 2003. Surveillance: Radiographic imaging with cosmic-ray muons.
Nature 422: 277-278.
Brini, D., Peli, L., Rimondi,
O. & Veronesi, P. 1955. Absolute low-energy differential range
spectrum of cosmic ray μ-mesons at sea-level. Il Nuovo
Cimento (1955-1965) 2(3): 613-638.
Das
Gupta, N.N. & Ghosh, S.K. 1946. A report on the wilson
cloud chamber and its applications in physics. Reviews of Modern
Physics 18(2): 225-365.
Dixit,
M.S. & Rankin, A. 2006. Simulating the charge dispersion phenomena
in micro pattern gas detectors with a resistive anode. Nuclear
Instruments and Methods in Physics Research, Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 566(2): 281-285.
Dupré, R. & Aune, S. 2013. Genetic multiplexing
and first results with a 50 × 50 cm2 Micromegas. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 729: 888-894.
Eissa, N.A., Berényi, D., Máthé,
G., Varga, D., Řezanka,
I. & Malý, L. 1967. New higher levels
of 144Nd in the decay of 144Pm. Nuclear Physics A 100(2):
438-448.
Fomin, Y.A., Kalmykov, N.N., Karpikov, I.S., Kulikov, G.V., Kuznetsov,
M.Y., Rubtsov, G.I., Sulakov,
V.P. & Troitsky, S.V. 2017. No muon
excess in extensive air showers at 100- 500 PeV
primary energy: EAS-MSU results. Astroparticle
Physics 92: 1-6.
Fredrick,
H.S. 2016. Methods and simulations of muon tomography and reconstruction.
The University of Texas at Austin (Unpublished).
George, E.P., Jánossy, L. & McCaig, M. 1942.
The ‘second maximum’ of the shower transition curve of cosmic radiation.
Proc. R. Soc. Lond. A 180: 219-224.
Heyland, G.R. & Duncanson,
W.E. 1953. A search for irregularities in the absorption of cosmic
rays in lead. Proceedings of the Physical Society: Section A
66(1): 33.
Jánossy, L. & Nagy, L. 1957. Experiments
on the Rossi curve. Acta Physica Academiae Scientiarum Hungaricae 6(3):
467.
Nagy, L. 1958. Shower production
at small thicknesses of absorber. Acta
Physica Academiae Scientiarum Hungaricae 9(1):
63-72.
Priedhorsky, W.C., Borozdin,
K.N., Hogan, G.E., Morris, C., Saunders, A., Schultz, L.J. &
Teasdaleb, M.E. 2004. Detection of high-z objects using multiple
scattering of cosmic ray muons. AIP Conference Proceedings 698:
755-758.
Procureur, S. 2017. Muon imaging: Principles,
technologies and applications. Nuclear Instruments and Methods
in Physics Research, Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 878: 169-179.
Samat, S.B. & Evans, C.J. 2011. Determination
of radiation hazard arising from the 40K content of bottled mineral
water in Malaysia. Sains Malaysiana 40(12): 1355-1358.
Schultz, L.J., Borozdin, K.N., Gomez, J.J., Hogan, G.E., McGill, J.A., Morris,
C.L., Priedhorsky, W.C., Saunders, A.
& Teasdale, M.E. 2004. Image reconstruction and material Z discrimination
via cosmic ray muon radiography. Nuclear Instruments and Methods
in Physics Research, Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 519(3): 687-694.
Swann, W.F.G. & Ramsey, W.E.
1940. The secondary peak in the Rossi curvi
for tin. Phys. Rev. 477: 661-663.
Tanaka, H.K.M., Nakano, T., Takahashi,
S., Yoshida, J., Takeo, M., Oikawa, J., Ohminato,
T., Aoki, Y., Koyama, E., Tsuji, H., Ohshima, H., Maekawa,
T., Watanabe, H. & Niwa, K. 2008.
Radiographic imaging below a volcanic crater floor with cosmic-ray
muons. American Journal of Science 308: 843-850.
Tawalbeh, A.A., Samat,
S.B. & Yasir, M.S. 2013. Radionuclides
level and its radiation hazard index in some drinks consumed in
the central zone of Malaysia. Sains
Malaysiana 42(3): 319-323.
Thabayneh, K.M. 2016. Determination of alpha
particles concentration in some soil samples and the extent of their
impact on health. Sains Malaysiana
45(5): 699-707.
Zain, N.M., Gopir, G.K., Yatim,
B., Sanusi, H. & Husain, N.H. 2010. Observation of ground level
muon at Bangi in 2008-2009. AIP Conference Proceedings
1250: 468-471.
Zain, N.M., Gopir, G.K., Yatim,
B., Sanusi, H. & Husaina, N.H. 2009. Zenith angle dependence
of muon rate at ground level in Bangi. International Conference
on Space Science and Communication, IconSpace - Proceedings.
pp. 191-194.
*Corresponding author;
email: shazana.ukm@gmail.com
|