Sains Malaysiana 48(2)(2019): 385–391
http://dx.doi.org/10.17576/jsm-2019-4802-16
Physical and Chemical Properties of the
Rice Straw Activated Carbon Produced from Carbonization and KOH Activation
Processes
(Sifat Fizikal dan Kimia Karbon Teraktif Jerami
Padi yang Terhasil melalui Proses Pengkarbonan dan Pengaktifan KOH)
MOHAMAD JANI SAAD1,4, CHIN HUA CHIA1*, SARANI ZAKARIA1, MOHD SHAIFUL SAJAB2, SUFIAN MISRAN3, MOHAMMAD
HARIZ ABDUL RAHMAN4 & SIEW XIAN CHIN5
1Bioresources and Biorefinery Laboratory, Materials Science
Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Research Centre for Sustainable Process Technology, Faculty
of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
3Forest Research Institute of Malaysia, 52100 Kepong,
Selangor Darul Ehsan, Malaysia
4Green Technology Program, Agrobiodiversity and Environment
Research Centre, Malaysian Agriculture Research and Development Institute, 43400
Serdang, Selangor Darul Ehsan, Malaysia
5ASASIpintar Program, Pusat PERMATApintar®, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 1 June 2018/Accepted: 12 October
2018
ABSTRACT
In this study, highly porous
activated carbon was produced from rice straw by carbonization and followed by
activation using potassium hydroxide (KOH). Activated carbon samples
were prepared under different activation temperatures, i.e., 650, 750 and
850°C, and their physical and chemical properties were characterized
accordingly. The BET surface area of the activated
carbon samples was increased from 520 to 1048 m2/g
with the increase of activation temperature from 650 to 850°C. These
values were much higher than the non-activated rice straw carbon i.e., 1.16 m2/g.
The pore sizes of the rice straw activated carbon were found to be mainly in
mesopore size range of 2-50 nm. Total carbon content of the AC sample was
increased from 8.35% to 31.73% with the increase of activation temperature from
650 to 850°C. XRD and Raman spectroscopy
confirmed the graphite properties of the activated carbons produced. SEM images
proved high porosity of the AC after KOH activation.
Keywords: Activated carbon; biomass;
lignocellulosic
ABSTRAK
Dalam kajian ini, karbon teraktif berliang
tinggi telah dihasilkan daripada jerami padi melalui proses pengkarbonan
dan diikuti dengan pengaktifan bersama kalium hidroksida (KOH).
Sampel karbon teraktif disediakan pada suhu pengaktifan yang berbeza,
iaitu 650, 750 dan 850°C dan sifat fizikal dan kimia sampel
tersebut dicirikan. Luas permukaan sampel arang teraktif meningkat
daripada 520 ke 1048 m2/g
dengan peningkatan suhu pengaktifan daripada 650 ke 850°C. Nilai
ini adalah jauh lebih tinggi berbanding sampel karbon jerami padi
tanpa melalui proses pengaktifan, iaitu 1.16 m2/g. Saiz liang karbon teraktif adalah
pada saiz liang meso, iaitu dalam julat saiz 2-50 nm. Kandungan
karbon bagi sampel arang teraktif telah meningkat daripada 8.35%
kepada 31.73% dengan peningkatan suhu pengaktifan daripada 650 kepada
850°C. Analisis
XRD
dan spektroskopi Raman telah membuktikan sifat grafit
karbon teraktif yang terhasil. Imej SEM membuktikan sifat keliangan
yang tinggi bagi karbon teraktif jerami padi selepas proses pengaktifan
KOH.
Kata
kunci: Biojisim; karbon teraktif; lignoselulosa
REFERENCES
Altenor, S., Carene, B.,
Emmanuel, E., Lambert, J., Ehrhardt, J.J. & Gaspard, S. 2009. Adsorption
studies of methylene blue and phenol onto vetiver roots activated carbon
prepared by chemical activation. Journal of Hazardous Materials 165:
1029-1039.
Basta, A.H., Fierro, V.,
El-Saied, H. & Celzard, A. 2009. 2-steps KOH activation of rice straw: An
efficient method for preparing high-performance activated carbons. Bioresource
Technology 100: 3941-3947.
Bhatnagar, A., Hogland,
W., Marques, M. & Sillanpää, M. 2013. An overview of the modification
methods of activated carbon for its water treatment applications. Chemical
Engineering Journal 219: 499-511.
Cazetta, A.L., Vargas,
A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva,
T.L., Moraes, C.G. & Almeida, V.C. 2011. NaOH-activated carbon of high
surface area produced from coconut shell: Kinetics and equilibrium studies from
the methylene blue adsorption. Chemical Engineering Journal 174:
117-125.
Chen, J.S., Zhang, F.
& Li, G.D. 2008. Effects of raw material texture and activation manner on
surface area of porous carbons derived from biomass resources. Journal of
Colloid and Interface Science 327: 108-114.
Chunlan, L., Shaoping,
X., Yixiong, G., Shuqin, L. & Changhou, L. 2005. Effect of
pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43: 2295- 2301.
Danish, M. & Ahmad,
T. 2018. A review on utilization of wood biomass as a sustainable precursor for
activated carbon production and application. Renewable and Sustainable
Energy Reviews 87: 1-21.
El-Hendawy, A.N.A. 2003.
Influence of HNO3 oxidation on the structure and
absorptive properties of the corncob based activated carbon. Carbon 41:
713-722.
Evans, M.J.B., Halliop,
E. & Macdonald, J.A.F. 1999. The production of chemically activated carbon. Carbon 37: 269-274.
Everett, D.H. 1972.
Manual of symbols and terminology for physicochemical quantities and units,
Appendix II: definitions, terminology and symbols in colloid and surface
chemistry. Pure Appl. Chem. 31(4): 577-638.
Foo, K.Y. & Hameed,
B.H. 2011. Utilization of rice husks as a feedstock for preparation of
activated carbon by microwave induced KOH and K2CO3 activation. Bioresource
Technology 102: 9814-9817.
Gao, P., Liu, Z.H., Xue,
G., Han, B. & Zhou, M.H. 2011. Preparation and characterization of activated
carbon produced from rice straw by (NH4)2HPO4 activation. Bioresource
Technology 102: 3645-3648.
Guo, Y.P., Yang, S.F.,
Fu, W.Y., Qi, J.R., Li, R.Z., Wang, Z.C. & Xu, H.D. 2003. Adsorption of
malachite green on micro- and mesoporous rice husk-based active carbon. Dyes
Pigments 56: 219-229.
Hamza, U.D., Nasri,
N.S., Amin, N.S., Mohammed, J. & Zain, H.M. 2015. Characteristics of oil
palm shell biochar and activated carbon prepared at different carbonization
time. Desalin Water Treatment 57(17): 7999-8006.
Kalderis, D.,
Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle, J.O.
& Fernandez-Pereira, C. 2008. Adsorption of polluting substances on
activated carbons prepared from rice husk and sugarcane bagasse. Chemical
Engineering Journal 144: 42-50.
Kayiran, S.B., Lamari,
F.D. & Levesque, D. 2004. Adsorption properties and structural
characterization of activated carbons and nanocarbons. Journal Physic
Chemistry B 108(39): 15211-15215.
Lembaga Kemajuan
Pertanian Muda (MADA). 2010. Laporan Tahunan. Alor Setar, Kedah.
Lim, J.S., Manan, Z.A.,
Alwi, S.R.W. & Hashim, H. 2012. A review on utilization of biomass from
rice industry as a source of renewable energy. Renewable and Sustainable
Energy Reviews 16(5): 3084-3094.
Ma, X. & Ouyang, F.
2013.Adsorption properties of biomass-based activated carbon prepared with
spent coffee grounds and pomelo skin by phosphoric acid activation. Applied
Surface Science 268: 566-570.
MohdIqbaldin, M.N.,
Khudzir, I., MohdAzlan, M.I., Zaidi, A.G., Surani, B. & Zubri, Z. 2013.
Properties of coconut shell activated carbon. Journal of Tropical Forest
Science 25(4): 497-503.
Muniandy, L., Adam, F.,
Mohamed, A.R. & Ng, E.P. 2014. The synthesis and characterization of high
purity mixed microporous/mesoporous activated carbon from rice husk using
chemical activation with NaOH and KOH. Microporous Mesoporous Material 197:
316-323.
Oh, G.H. & Park,
C.R. 2002. Preparation and characteristics of rice straw based porous carbon
with high adsorption capacity. Fuel 81: 327-336.
Oh, G.H., Yun, C.H.
& Park, C.R. 2003. Role of KOH in the one-stage KOH activation of
cellulosic biomass. Carbon Science 4: 180-184.
Perrin, A., Celzard, A.,
Albiniak, A., Kaczmarczyk, J., Mareche, J.F. & Furdin, G. 2004. NaOH
activation of anthracites: Effect of temperature on pore textures and methane
storage ability. Carbon 42: 2855-2901.
Pol, V.G., Motiei, M.,
Gedanken, A., Calderon-Moreno, J. & Yoshimura, M. 2004. Carbon spherules:
Synthesis, properties and mechanistic elucidation. Carbon 42: 111-116.
Rosmiza, M.Z., Davies,
W.P., Rosniza Aznie, C.R., Mazdi, M. & Jabil, M.J. 2014. Farmers’ knowledge
on potential uses of rice straw: An assessment in MADA and Sekinchan, Malaysia. Malaysian Journal of Society and Space 5: 30-43.
Rostamian, R., Heidarpour,
M., Mousavi, S.F. & Afyuni, M. 2015. Characterization and sodium sorption
capacity of biochar and activated carbon prepared from rice husk. Journal
Agricultural Science Technology 17: 1057-1069.
Rugayah, A.F., Astimar, A.A. &
Norzita, N. 2014. Preparation and characterization of activated carbon from
palm kernel shell by physical activation with steam.
Journal Oil Palm Research 26: 251-264
San Miguel, G., Fowler, G.D. &
Sollars, C.J. 2003. A study of the characteristics of activated carbons produced
by steam and carbon dioxide activation of waste tyre rubber. Carbon 41:
1009-1016.
Schroder,
E., Thomauske, K., Weber, C., Hornung, A. & Tumiatti, V. 2007.
Experiments on the generation of activated carbon from biomass.
Journal of Analytical and Applied Pyrolysis 79: 106-111.
Shamsuddin,
M.S., Yusoff, N.R.N. & Sulaiman, M.A. 2016. Synthesis and characterization
of activated carbon produced from kenaf core fiber using H3PO4 activation.
Procedia Chemistry 19: 558-565.
Sobhy, M.Y., Hakim, A.E., Daifullah, M. & Sohair, A.E.
2015. Pore structure characterization of chemically modified biochar
derived from rice straw. Environmental Engineering and Management
Journal 14(2): 473-480.
Song, M., Jin, B., Xiao, R., Yang, L.,
Wu, Y., Zhong, Z. & Huang, Y. 2013. The comparison of two activation
techniques to prepare activated carbon from corn cob. Biomass Bioenergy 48:
250-256.
Srenscek-Nazzal, J., Kaminskaa, W.,
Michalkiewicza, B. & Korenb, Z. 2013. Production, characterization and
methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial
Crops and Products 47: 153-159.
Sumrit, M., Supattra, I. & Laddawan,
A. 2015. Effect of temperature on micropore of activated carbon from sticky
rice straw by H3PO4 activation. Carbon: Science and Technology 7: 24-29.
Tang, Y.B., Liu, Q. & Chen, F.Y.
2012. Preparation and characterization of activated carbon from waste Ramulus
mori. Chemical Engineering Journal 203: 19-24.
Viboon, S., Chiravoot, P., Duangdao A.
& Duangduen, A. 2008. Preparation and characterization of activated carbon
from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy
& Fuels 22: 31-37.
Wu, M., Guo, Q. & Fu, G. 2013.
Preparation and characteristics of medicinal activated carbon powders by CO2
activation of peanut shells. Powder Technology 247: 188-196.
Wu, W., Yang, M., Feng, Q., McGrouther,
K., Wang, H., Lu, H.H. & Chen, Y.X. 2012. Chemical characterizations of
rice straw-derived bio char for soil amendment. Biomass & Bioenergy
47: 268-276.
Yakout, S.M. & El-Deen, G.S 2016.
Characterization of activated carbon prepared by phosphoric acid activation of
olive stones. Arabian Journal of Chemistry 9: S1155-S1162.
Yu, Q., Li, M., Ning, P., Yi, H. &
Tang, X. 2014. Preparation and phosphine adsorption of activated carbon
prepared from walnut shells by KOH chemical activation. Separation Science
Technology 49: 2366-2375.
Zainol, M.M., Amin, N.A.S. & Asmadi,
M. 2017. Preparation and characterization of impregnated magnetic particles on
oil palm frond activated carbon for metal ions removal. Sains Malaysiana 46(5):
773-782.
Zhang, F., Wang, K.X., Li, G.D. &
Chen, J.S. 2009. Hierarchical porous carbon derived from rice straw for lithium
ion batteries with high-rate performance. Electrochemistry Communication 11:
130-133.
Zhang, F., Ma, H., Chen, J., Li, G.D.,
Zhang, Y. & Chen, J.S. 2008. Preparation and gas storage of high surface
area microporous carbon derived from biomass source cornstalks. Bioresource
Technology 99: 4803-4808.
Zhu, K., Fu, H., Zhang, J., Ly, X., Tang,
J. & Xu, X. 2012. Studies on removal of NH4+-N from aqueous solution by
using the activated carbons derived from rice husk. Biomass & Bioenergy 43:
18-25.
*Corresponding author; email:
chia@ukm.edu.my
|