Sains Malaysiana 48(2)(2019): 407–417
http://dx.doi.org/10.17576/jsm-2019-4802-19
Elektrod Superkapasitor daripada Komposit Karbon
Teraktif dan Grafen dengan Perekat PVDF-HFP
(Supercapacitor Electrode from Activated Carbon
and Graphene Composite with PVDF-HFP Binder)
MOHAMAD
REDWANI MOHD JASNI, MOHAMAD DERAMAN, ZALITA ZAINUDDIN*, CHIA CHIN
HUA & RAMLI OMAR
School of Applied Physics, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 14 July 2018/Accepted: 10 October
2018
ABSTRAK
Elektrod superkapasitor elektrokimia dwi-lapisan telah dihasilkan
menggunakan serbuk karbon monolit teraktif (KMT)
sebagai bahan pemula dan grafen sebagai bahan tambah. Elektrod telah
disediakan dengan mencampurkan serbuk KMT dan grafen dengan peratus berat yang
berbeza (0, 5, 10, 20 dan 40 % bt.) yang ditambah larutan poli-vinilidene
fluorida-heksaafluoroprofilen (PVDF-HFP) sebagai agen perekat
serta karbon hitam sebagai agen konduksian. Pencirian fizikal dijalankan
ke atas elektrod dengan menggunakan kaedah pembelauan sinar-X (XRD)
dan isoterma jerapan-nyahjerapan. Prestasi sel superkapasitor dengan
elektrolit akueus 6 M KOH telah diuji menggunakan kaedah spektroskopi impedans
elektrokimia (EIS), voltametri berkitar (CV)
dan cas-discas galvanostatik (GCD). Sel superkapasitor dengan bahan
tambah grafen 5 % bt. (KMT05) didapati mempunyai kapasitans
tentu yang tertinggi (172 F g-1), tenaga tentu yang tertinggi
(11 Wh kg-1), kuasa tentu yang tertinggi (196.13
W kg-1), masa gerak balas terendah (2 s) serta rintangan pemindahan
cas terendah (2.4 Ω) berbanding sel-sel yang lain. Ini menunjukkan bahawa bahan tambah
grafen 5 % bt. adalah optimum untuk meningkatkan prestasi sel. Hasil
ini selaras dengan saiz mikrohablur serta luas permukaan khusus
KMT05X
yang lebih besar berbanding KMT tanpa bahan tambah grafen
(KMT00X).
Kata kunci: Elektrolit akues; elektrod
perekat; grafen; karbon monolit teraktif; serbuk karbon swa-merekat
ABSTRACT
Electrochemical double-layer supercapacitor
electrodes were produced using an activated carbon monolith (ACM)
powder as the precursor and graphene as the additive. Electrodes
were prepared by mixing ACM powder and graphene with different weight percentage
(0, 5, 10, 20 and 40 wt. %) which were added with poly-vinylidene
fluoride-hexafluoropropylene (PVDF-HFP)
solution as a binding agent and carbon black as a conductive agent.
Physical characterization was carried out on the electrodes by using
an X-ray diffraction (XRD) and adsorption-desorption isotherms methods. Supercapacitor
cells performance using 6 M KOH aqueous
electrolyte were tested using electrochemical impedance spectroscopy
(EIS),
cyclic voltammetry (CV) and galvanostatic charge discharges
(GCD) methods. Supercapacitor cell with 5 wt. % graphene
additive (KMT05) was found to have the highest specific capacitance
(172 F g-1), highest specific energy (11 Wh kg-1),
highest specific power (196.13 W kg-1), lowest response time (2 s),
and lowest charge transfer resistance (2.4 Ω) compared to other cells. This showed
that 5 wt. % graphene additive is optimum for improving the cell
performance. These results are compatible with the larger microcrystallites
size and specific surface area of KMT05X have a larger compared
to the KMT with no graphene additive (KMT00X).
Keywords: Activated carbon monoliths;
aqueous electrolyte; graphene; paste electrode; self-adhesive carbon
grains
REFERENCES
Awitdrus.,
Deraman, M., Talib, I.A., Omar, R., Jumali, M.H.H., Taer, E. & Saman, M.M.
2010. Microcrystallite dimension and total active surface area of carbon
electrode from mixtures of pre-carbonized oil palm empty fruit bunches and
green petroleum cokes. Sains Malaysiana 39(1): 83-86.
Ban, S.,
Zhang, J., Zhang, L., Tsay, K., Song, D. & Zou, X. 2013. Charging and
discharging electrochemical supercapacitors in the presence of both parallel
leakage process and electrochemical decomposition of solvent. Electrochimica
Acta 90: 542-549.
Barsykov, V.
& Khomenko, V. 2010. The influence of polymer binders on the performance of
cathodes for lithium-ion batteries. Scientific Journal of Riga Technical
University 21: 67-71.
Chee, W.K.,
Lim, H.N. & Huang, N.M. 2014. Electrochemical properties of free-standing
polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int. J.
Energ. Res. 31(2007): 135-147.
Chen, Y.,
Zhang, X., Zhang, H., Sun, X., Zhang, D. & Ma, Y. 2012. High-performance
supercapacitors based on a graphene-activated carbon composite prepared by
chemical activation. RSC Advances 2(20): 7747-7753.
Deraman, M., Ishak, M.M.,
Farma, R., Awitdrus, Taer, E., Talib, I.A. & Omar, R. 2011. Binderless
composite electrode monolith from carbon nanotube and biomass carbon activated
by H2SO4 and
CO2 gas for supercapacitor. AIP
Conference Proceedings 1415: 175-179.
Deraman, M.,
Awitdrus, Talib, I.A., Omar, R., Jumali, M.H.H., Ishak, M.M., Saad, S.K.M.,
Taer, E., Saman, M.M., Farma, R. & Yunus, R.M. 2010. Electrical
conductivity of carbon pellets prepared from mixtures of pyropolymers from oil
palm bunches and petroleum green coke. AIP Conference Proceedings 50:
50-53.
Deraman, M.,
Zakaria, S. & Murshidi, J.A. 2001. Estimation of crystallinity and
crystallite size of cellulose in benzylated fibres of oil palm empty fruit
bunches by X-ray diffraction. Japanese Journal of Applied Physics 40:
3311-3314.
Dolah,
B.N.M., Deraman, M., Othman, M.A.R., Farma, R., Taer, E., Awitdrus, Basri,
N.H., Talib, I.A., Omar, R. & Nor, N.S.M. 2014. A method to produce
binderless supercapacitor electrode monoliths from biomass carbon and carbon
nanotubes. Materials Research Bulletin 60: 10-19.
Dong, X.,
Xu, H., Wang, X., Huang, Y., Chan-Park, M.B. & Zhang, H., Wang, L., Huang,
W. & Chen, P. 2012. 3D graphene à cobalt oxide electrode for
high-performance supercapacitor and enzymeless glucose detection ACS Nano 6(4):
3206-3213.
Emmenegger,
C., Mauron, P., Sudan, P., Wenger, P., Hermann, V., Gallay, R. & Zuttel, J.
2003. Investigation of electrochemical double-layer (ECDL) capacitors
electrodes based on carbon nanotubes and activated carbon materials. Journal
of Power Sources 124(1): 321-329.
Fan, X., Yu,
C., Yang, J., Ling, Z. & Qiu, J. 2014. Hydrothermal synthesis and
activation of graphene-incorporated nitrogen-rich carbon composite for
high-performance supercapacitors. Carbon 70: 130-141.
Farma, R.,
Deraman, M., Awitdrus, Talib, I.A., Omar, R., Manjunatha, J.G., Ishak, M.M.,
Basri, N.H. & Dolah, B.N.M. 2013a. Physical and electrochemical properties
of supercapacitor composite electrodes prepared from biomass carbon. International
Journal of Electrochemical Science 8: 257-273.
Farma, R.,
Deraman, M., Awitdrus, A., Talib, I.A., Taer, E., Basri, N.H., Manjunatha,
J.G., Ishak, M.M., Dolah, B.N.M. & Hashmi, S.A. 2013b. Preparation of
highly porous binderless activated carbon electrodes from fibres of oil palm
empty fruit bunches for application in supercapacitors. Bioresource
Technology 132: 254-261.
Gonzlez, A.,
Goikolea, E., Barrena, J.A. & Mysyk, R. 2016. Review on supercapacitors:
Technologies and materials. Renewable and Sustainable Energy Reviews 58:
1189-1206.
Gu, W. &
Yushin, G. 2014. Review of nanostructured carbon materials for electrochemical
capacitor applications: Advantages and limitations of activated carbon,
carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon
nanotubes, onion-like carbon, and graphene. Advanced Reviews 3: 424-473.
Ho, M.Y.,
Khiew, P.S., Isa, D., Tan, T.K., Chiu, W.S., Chia, C.H., Hamid, M.A.A. &
Shamsudin, R. 2014. Nano Fe3 O4-
activated carbon composites for aqueous supercapacitors. Sains Malaysiana 43(6):
885-894.
Jasni,
M.R.M., Deraman, M., Suleman, M., Zainuddin, Z., Othman, M.A.R., Chia, C.H.
& Hashim, M.A. 2017. Supercapacitor electrodes from activation of
binderless green monoliths of biomass self-adhesive carbon grains composed of
varying amount of graphene additive. Ionics 24(4): 1195-1210.
Jasni,
M.R.M., Deraman, M., Hamdan, E., Sazali, N.E.S., Nor, N.S.M., Ishak, M.M.,
Basri, N.H., Omar, R., Othman, M.A.R., Zulkifli, R., Daik, R. & Suleman. M.
2016a. Effect of KOH treated graphene in green monoliths of pre-carbonized
biomass fibers on the structure, porosity and capacitance of supercapacitors
carbon electrodes. Material Science Forum 846: 551-558.
Jasni,
M.R.M., Deraman, M., Suleman, M., Hamdan, E., Sazali, N.E.S., Nor, N.S.M. &
Shamsudin, S.A. 2016b. Effect of nano-scale characteristics of graphene on
electrochemical performance of activated carbon supercapacitor electrodes. AIP
Conference Proceedings 1710: 300341-300349.
Jiang, L.,
Yan, J., Zhou, Y., Hao, L., Xue, R., Jiang, L. & Yi, B. 2013. Activated
carbon/graphene composites with high-rate performance as electrode materials
for electrochemical capacitors. Journal of Solid State Electrochemistry 17(11):
2949-2958.
Ke, Q. &
Wang, J. 2016. Graphene-based materials as supercapacitor electrodes - A
review. Journal of Materiomics 2: 37-54.
Kim, T.,
Jung, G., Yoo, S., Suh, K.S. & Ruoff, R.S. 2013. Activated graphene-based
carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8):
6899-6905.
Liu, D., Jia,
Z. & Wang, D. 2016. Preparation of hierarchically porous carbon nanosheet
composites with graphene conductive scaffolds for supercapacitors: An
electrostatic-assistant fabrication strategy. Carbon 100: 664-677.
Nor, N.S.M.,
Deraman, M., Omar, R., Awitdrus, Farma, R., Basri, N.H., Dolah, B.N.M., Mamat,
N.F., Yatim, B. & Daud, M.N.M. 2015. Influence of gamma irradiation
exposure on the performance of supercapacitor electrodes made from oil palm
empty fruit bunches. Energy 79: 183-194.
Nor, N.S.M.,
Deraman, M., Suleman, M., Jasni, M.R.M., Manjunatha J.G., Othman, M.A.R. &
Shamsudin S.A. 2017. Supercapacitors using Binderless activated carbon
monoliths electrodes consisting of a graphite additive and pre-carbonized
biomass fibers. International Journal of Electrochemical Science 12:
2520-2539.
Qu, D. 2002.
Studies of the activated carbons used in double-layer supercapacitors. Journal
of Power Sources 109(2): 403-411.
Sevilla, M.
& Mokaya, R. 2014. Energy storage applications of activated carbons:
Supercapacitors and hydrogen storage. Energy Environment Science 7:
1250-1280.
Sing, K.S.W.
1985. Reporting physisorption data for gas/ solid systems with special
reference to the determination of surface area and porosity. Pure and
Applied Chemistry 57(4): 603-619.
Soltaninejad,
S., Daik, R., Deraman, M., Chin, Y.C., Nor, N.S.M., Sazali, N.E.S., Hamdan, E.,
Jasni, M.R.M., Ishak, M.M., Noroozi, M. & Suleman, M. 2015. Physical and
electrochemical characteristics of carbon monoliths electrodes from activation
of pre-carbonized fibers of oil palm empty fruit bunches added with varying
amount of polypyrrole. International Journal of Electrochemical Science 10:
10524-10542.
Sulaiman,
K.S., Mat, A. & Arof, A.K. 2016. Activated carbon from coconut leaves for
electrical double-layer capacitor. Ionics 22(6): 911-918.
Taberna,
P.L., Simon, P. & Fauvarque, J.F. 2003. Electrochemical characteristics and
impedance spectroscopy studies of carbon-carbon supercapacitors. Journal of
the Electrochemical Society 150(3): A292-A300.
Taer, E., Deraman, M., Talib,
I.A., Awitdrus, A., Hashmi, S.A. & Umar, A.A. 2011. Preparation of a highly
porous binderless activated carbon monolith from rubber wood sawdust by a
multi-step activation process for application in supercapacitors. International
Journal of Electrochemical Science 6: 3301-3315.
Taer, E., Deraman, M., Talib, I.A., Umar,
A.A., Oyama, M. & Yunus, R.M. 2010. Physical, electrochemical and
supercapacitive properties of activated carbon pellets from pre-carbonized
rubber wood sawdust by CO2 activation. Current Applied Physics 10:
1071-1075.
Tsay, K.C., Zhang, L. & Zhang, J.
2012. Effects of electrode layer composition/thickness and electrolyte
concentration on both specific capacitance and energy density of
supercapacitor. Electrochimica Acta 60: 428-436.
Wang, H.Q., Yin, J., Li, Q. & Yin, P.
2014. Current progress on the preparation of binders for electrochemical
supercapacitors. PostDoc Journal: Journal of Postdoctoral Research 2(1):
31-238.
Wei, L., Sevilla, M., Fuertes, A.B., Mokaya,
R. & Yushin, G. 2012. Polypyrrole-derived activated carbons for
high-performance electrical double-layer capacitors with ionic liquid
electrolyte. Advanced Functional Materials 22(4): 827-834.
Xie, Q., Bao, R., Xie, C., Zheng, A., Wu,
S., Zhang, Y., Zhang, R. & Zhao, P. 2016. Core-shell N-doped active carbon
fiber@ graphene composites for aqueous symmetric supercapacitors with
high-energy and high-power density. Journal of Power Sources 317:
133-142.
Xu, Y., Chang, L. & Hu, Y.H. 2016.
KOH-assisted microwave post-treatment of activated carbon for efficient
symmetrical double-layer capacitors. International Journal of Energy
Research 41: 728-735.
Xu, Y., Lin, Z., Huang, X., Liu, Y.,
Huang, Y. & Duan, X. 2013. Flexible solid-state supercapacitors based on
three-dimensional ACS Nano 7(5): 4042-4049.
Zheng, C., Zhou, X., Cao, H., Wang, G.
& Liu, Z. 2014. Synthesis of porous graphene/activated carbon composite
with high packing density and large specific surface area for supercapacitor
electrode material. Journal of Power Sources 258: 290-296.
Zhong, C., Deng, Y., Hu, W., Qiao, J.,
Zhang, L. & Zhang, J. 2015. A review of electrolyte materials and
compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44:
7484-7539.
Zhou, S., Xie, Q., Wu, S., Huang, X.
& Zhao, P. 2017. Influence of graphene coating on supercapacitive behavior
of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous
and organic electrolytes. Ionics 1: 1-9.
Zhu, Y., Murali, S., Cai, W., Li, X.,
Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide:
Synthesis, properties, and applications. Advanced Materials 22: 3906-
3924.
*Corresponding author; email:
zazai@ukm.edu.my
|