Sains Malaysiana 48(2)(2019): 435–442
http://dx.doi.org/10.17576/jsm-2019-4802-22
Aggregation and Stability of Iron Oxide and
Alumina Nanoparticles: Influences of pH and Humic Acid Concentration
(Pengagregatan dan Kestabilan Oksida Besi dan Zarah
Nano Alumina: Pengaruh pH dan Kepekatan Asid Humik)
NUR SURAYA AHMAD1*, SHAHIDAN RADIMAN1 & WAN ZUHAIRI WAN YAACOB2
1School of Applied Physics, Faculty of
Science and Technology, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School of Environmental and Natural
Sources Sciences, Faculty of Science and Technology, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Received: 2
May 2018/Accepted: 19 October 2018
ABSTRACT
The scenario of released
nanoparticles from consumer products into the environment especially natural
waters has become a great concern nowadays. Assessing their aggregation and
stability under environmental conditions is important in determining their fate
and behavior in natural waters. The aggregation behavior of selected
nanoparticles (iron oxide and alumina) was investigated at variable
concentrations of humic acid (5, 10, 50 mg/L), and pH variation in solution.
Dynamic light scattering was used to measure their z-average hydrodynamic
diameter and zeta potential. Derjaguin-Landau-Verwey-Overbeak (DLVO)
theory was used to explain the thermodynamic interactions between two
particles. Then, the stability was evaluated by assessing their aggregation.
The increasing of humic acid concentrations enhanced aggregation of iron oxide
and alumina nanoparticles, particularly at low pH levels. The maximum
aggregation was found in pH below the point of zero charge (PZC)
due to electrostatic destabilization and electrostatic stabilization that took
place at pH above the point of zero charge. Meanwhile, at pH point of zero
charge, nanoparticles were coated with negative humic acid charged. From this
study, properties of nanoparticles (size, surface charge, Hamaker constant) and
environmental condition (humic acid concentration, pH) have their specific
roles to control the fate and behavior of nanoparticles in environmental media.
Keywords: Aggregation; DLVO;
nanoparticles; stability
ABSTRAK
Pada masa ini, peningkatan senario
pelepasan zarah nano daripada produk pengguna ke persekitaran terutamanya ke
dalam air semula jadi amatlah membimbangkan. Penilaian agregasi dan kestabilan
zarah nano adalah penting untuk menentukan keadaan dan tingkah lakunya di dalam
kandungan air semula jadi. Kajian mengenai tingkah laku agregasi zarah nano
(oksida besi dan alumina) pada pelbagai kepekatan asid humik (5,10,50 mg/L) dan
pH yang berlainan dijalankan. Penyerakan cahaya dinamik digunakan untuk
mengukur purata diameter hidrodinamik dan nilai keupayaan zeta. Teori
Derjaguin-Landau-Verwey-Overbeak (DLVO) digunakan untuk
menerangkan tindak balas termodinamik antara dua zarah. Kemudian, kestabilan
dinilai berdasarkan tingkah laku agregasi. Peningkatan kepekatan asid humik
telah menggalakkan/meningkatkan tingkah laku agregasi zarah nano oksida besi
dan alumina pada pH yang rendah. Agregasi maksimum dijumpai pada pH di bawah
caj titik sifar yang disebabkan oleh ketidakstabilan elektrostatik dan
kestabilan elektrostatik dilihat berlaku pada pH di atas pH caj titik sifar.
Manakala, pada caj titik sifar, zarah nano disaluti dengan caj asid humik yang
bersifat negatif. Keputusan daripada kajian ini mendapati sifat zarah nano
(saiz, caj permukaan, pemalar Hamaker) dan keadaan persekitaran (kepekatan asid
humik dan pH) memainkan peranan yang penting dalam mengawal keadaan dan tingkah
laku zarah nano pada medium sekitaran.
Kata
kunci: Agregasi; DLVO; kestabilan;
zarah nano
REFERENCES
Almusallam, A.A.,
Abdulraheem, Y.M., Shahat, M. & Korah, P. 2012. Aggregation behavior of
titanium dioxide nanoparticles in aqueous environments. Journal of
Dispersion Science and Technology 33: 728-738.
Baalousha, M. 2009.
Aggregation and disaggregation of iron oxide nanoparticles: Influence of
particle concentration, pH and natural organic matter. Science of the Total
Environment 407: 2093-2101.
Barisit, M., Atalay, S.,
Beskok, A. & Qian, S. 2014. Size dependent surface charge properties of
silica nanoparticles. The Journal of Physical Chemistry 118(4):
1836-1842.
Bhatt, I. & Triphati,
B.N. 2011. Interaction of engineered nanoparticles with various components of
the environment and possible strategies for their risk assessment. Chemosphere 82: 308-317.
Buffle, J., Wilkinson,
K.J., Stoll, S., Fiella, M. & Zhang, J.W. 1998. A generalized description
of aquatic colloidal interaction: The three-colloidal component approach. Environmental
Science Technology 32: 2887-2899.
Chekli, L., Phuntsho,
S., Roy, M., Lombi, E., Donner, E. & Shon, H.K. 2013a. Assessing the
aggregation behaviour of iron oxide nanoparticles under relevant environmental
conditions using a multi-method approach. Water Research 47: 4585-4599.
Chekli, L., Phuntsho,
S., Roy, M. & Shon, H.K. 2013b. Characterization of fe-oxide nanoparticles
coated with humic acid and Suwannee river natural organic matter. Science of
the Total Environment 461-462: 19-27.
De Mesquita, L.M.S.,
Lins, F.F. & Torem, M.L. 2003. Interaction of hydrophobic bacterium strain
in a hematitenext term quartz flotation system. International Journal of
Mineral Processing 71(1-4): 31-44.
Dickson, D., Liu, G.,
Li, C., Tachiev, G. & Cai, Y. 2012. Dispersion and stability of bare
hematite nanoparticles: Effect of dispersion tools, nanoparticles
concentration, humic acid and ionic strength. Science of the Total
Environment 419: 171-177.
Elimelech, M., Gregory,
J., Jia, X. & Williams, R.A. 1995. Particle Deposition and Aggregation:
Measurement, Modelling and Simulation. Oxford: Butterworth-Heinemann.
Erhayem, M. & Sohn,
M. 2014. Effect of humic acid source on humic acid adsorption onto titanium
dioxide nanoparticles. Science of the Total Environment 470-471: 92-98.
Fritz, H.M. &
Reinhanrd, N. 2010. Nanoparticles in the Water Cycle: Properties, Analysis,
and Environmental Relevance. New York: Springer.
Ghosh, S., Hamid, M.,
Prasanta, B. & Xing, B.S. 2010. Colloidal stability of Al2O3 nanoparticles
as affected by coating of structurally different humic acids. Langmuir 26(2):
873-879.
Gottschalk, F., Sun, T.
& Nowack, B. 2013. Environmental concentrations of engineered
nanomaterials: Review of modeling and analytical studies. Environmental
Pollution 181: 287-300.
Gottschalk, F. &
Nowack, B. 2011. The release of engineered nanomaterials to the environment. Journal
of Environmental Monitoring 13: 1145-1155.
Hoecke, V.K., De
Schamphelaere, K.A., Van Der Meeren, P., Smagghe, G. & Janssen, C.R. 2011.
Aggregation and ecotoxicity of CeO nanoparticles in synthetic and natural
waters with variable pH, organic matter concentration and ionic strength. Environmental
Pollution 159: 970-976.
Hotze, E.M. & Lowry,
G.V. 2010. Nanoparticle aggregation: Challenges to understanding transport and
reactivity in the environment. Journal of Environmental Quality 39:
1909- 1924.
Hu, J-D., Zevi, Y., Kou,
X-M., Xiao, J., Wang, X-J. & Jin, Y. 2010. Effect of dissolved organic
matter on the stability of magnetite nanoparticles under different pH and ionic
strength conditions. Science of the Total Environment 408: 3477-3489.
Illes, E. & Tombacz,
E. 2006. The effect of humic acid adsorption on pH-dependent surface charging
and aggregation of magnetite nanoparticles. Journal of Colloid and Interface
Science 295: 115-123.
Keller, A.A., McFerran,
S., Lazareva, A. & Suh, S. 2013. Global life cycle releases of engineered
nanomaterials. Journal of Nanoparticles Research 15: 1-17.
Klaine, S.J., Alvarez,
P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S.,
McLaughlin. & Lead, J.R. 2008. Environmental Toxicology and Chemistry 27(9):
1825-1851.
Kobayashi, M.,
Juillerat, F., Galletto, P., Bowen, P. & Borkovec, M. 2005. Aggregation and
charging of colloidal silica particles: Effect of particle size. Langmuir 21:
5761-5769.
Labille, J. & Brant,
J. 2010. Stability of nanoparticles in water. Nanomedicine 5(6):
985-998.
Lead, J.R. &
Wilkinson, K.J. 2006. Aquatic colloids and nanoparticles: Current knowledge and
future trends. Environmental Chemistry 3: 159-171.
Loosli, F., Coustumer, P.L. & Stoll,
S. 2013. TiO2 Nanoparticles aggregation and disaggregation in presence of alginate
and Suwannee river humic acids, pH and concentration effects on nanoparticle
stability. Water Research 47: 6052-6063.
Maurer-Jones, M.A., Gunsolus, I.L.,
Murphy, C.J. & Haynes, C.L. 2013. Toxicity of engineered nanoparticles in
the environment. Analytical Chemistry 85(6): 3036-3049.
Medout-Marere, V. 2000. A simple
experimental way of measuring the Hamaker constant A11 of divided solids by
immersion calometry in apolar liquids. Journal Colloid of Interface Science 228(2):
434-437.
Nam, Y. & Lead, J.R. 2008.
Manufactured nanoparticles: An overview of their chemistry, interactions and
potential environmental implications. Science of the Total Environment 400:
396-414.
Omar, F.M., Aziz, H.A. & Stoll, S.
2014a. Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and
adsorption of Suwannee River humic acid. Science of the Total Environment 468-469:
195-201.
Omar, F.M., Aziz, H.A. & Stoll, S.
2014b. Nanoparticle properties, behavior, fate in aquatic systems and
characterization methods. Journal of Colloid Science and Biotechnology 3:
1-30.
Peters, R., Kramer, E., Agnes, G.O.,
Rivera, Z.E.H., Oegema, G., Tromp, P.C., Fokkink, R., Rietveld, A., Marvin,
H.J.P., Weigel, S., Peijnenburg, A.A.C.M. & Bouwmeester, H. 2012. Presence
of nano-sized silica during in vitro digestions of food containing
silica as a food additive. ACS Nano 6(3): 2441-2451.
Philippe, A. & Schaumann, G.E. 2014.
Interactions of dissolved organic matter with natural and engineered inorganic
colloids: A review. Environmental Science & Technology 48(16):
8946-8962.
Romanello, M.B. & Fidalgo De
Cortalezzi, M.M. 2013. An experimental study on the aggregation nanoparticles
under environmentally relevant conditions. Water Research 47: 3887-3898.
Therezein, M., Thill, A. & Wiesner,
M.R. 2014. Importance of heterogeneous aggregation for NP fate in natural and
engineered systems. Science of the Total Environment 485- 486: 309-318.
Tombacz, E., Dobos, A., Szekeres, M.,
Narres, H.D., Klumpp, E. & Dekany, I. 2000. Effect of pH and ionic strength
on the interaction of humic acid with aluminium oxide. Colloid Polymer
Science 278: 337-345.
Wagner, S., Gondikas, A., Neubauer, E.,
Hofmann, T. & Von Der Kammer, F. 2014. Spot the difference: Engineered and
natural nanoparticles in the environment-release, behavior and fate. Angewandte
Chemie-International Edition 53(46): 12398-12419.
Yang, K., Lin, D. & Xing, B. 2009.
Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:
3571-3576.
Zhang, W-X. 2003. Nanoscale iron
particles for environmental remediation: An overview. Journal of
Nanoparticle Research 5: 323-332.
Zhang, Y., Chen, Y., Westerhoff, P.,
Hristovski, K. & Crittenden, J.C. 2008. Stability of commercial metal oxide
nanoparticles in water. Water Research 42: 2204-2212.
*Corresponding author; email:
nursuraya_ahmad@siswa.ukm.edu.my