Sains Malaysiana 48(2)(2019): 435–442

http://dx.doi.org/10.17576/jsm-2019-4802-22

 

Aggregation and Stability of Iron Oxide and Alumina Nanoparticles: Influences of pH and Humic Acid Concentration

(Pengagregatan dan Kestabilan Oksida Besi dan Zarah Nano Alumina: Pengaruh pH dan Kepekatan Asid Humik)

 

NUR SURAYA AHMAD1*, SHAHIDAN RADIMAN1 & WAN ZUHAIRI WAN YAACOB2

 

1School of Applied Physics, Faculty of Science and Technology, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Environmental and Natural Sources Sciences, Faculty of Science and Technology, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 2 May 2018/Accepted: 19 October 2018

 

ABSTRACT

The scenario of released nanoparticles from consumer products into the environment especially natural waters has become a great concern nowadays. Assessing their aggregation and stability under environmental conditions is important in determining their fate and behavior in natural waters. The aggregation behavior of selected nanoparticles (iron oxide and alumina) was investigated at variable concentrations of humic acid (5, 10, 50 mg/L), and pH variation in solution. Dynamic light scattering was used to measure their z-average hydrodynamic diameter and zeta potential. Derjaguin-Landau-Verwey-Overbeak (DLVO) theory was used to explain the thermodynamic interactions between two particles. Then, the stability was evaluated by assessing their aggregation. The increasing of humic acid concentrations enhanced aggregation of iron oxide and alumina nanoparticles, particularly at low pH levels. The maximum aggregation was found in pH below the point of zero charge (PZC) due to electrostatic destabilization and electrostatic stabilization that took place at pH above the point of zero charge. Meanwhile, at pH point of zero charge, nanoparticles were coated with negative humic acid charged. From this study, properties of nanoparticles (size, surface charge, Hamaker constant) and environmental condition (humic acid concentration, pH) have their specific roles to control the fate and behavior of nanoparticles in environmental media.

 

Keywords: Aggregation; DLVO; nanoparticles; stability

 

ABSTRAK

Pada masa ini, peningkatan senario pelepasan zarah nano daripada produk pengguna ke persekitaran terutamanya ke dalam air semula jadi amatlah membimbangkan. Penilaian agregasi dan kestabilan zarah nano adalah penting untuk menentukan keadaan dan tingkah lakunya di dalam kandungan air semula jadi. Kajian mengenai tingkah laku agregasi zarah nano (oksida besi dan alumina) pada pelbagai kepekatan asid humik (5,10,50 mg/L) dan pH yang berlainan dijalankan. Penyerakan cahaya dinamik digunakan untuk mengukur purata diameter hidrodinamik dan nilai keupayaan zeta. Teori Derjaguin-Landau-Verwey-Overbeak (DLVO) digunakan untuk menerangkan tindak balas termodinamik antara dua zarah. Kemudian, kestabilan dinilai berdasarkan tingkah laku agregasi. Peningkatan kepekatan asid humik telah menggalakkan/meningkatkan tingkah laku agregasi zarah nano oksida besi dan alumina pada pH yang rendah. Agregasi maksimum dijumpai pada pH di bawah caj titik sifar yang disebabkan oleh ketidakstabilan elektrostatik dan kestabilan elektrostatik dilihat berlaku pada pH di atas pH caj titik sifar. Manakala, pada caj titik sifar, zarah nano disaluti dengan caj asid humik yang bersifat negatif. Keputusan daripada kajian ini mendapati sifat zarah nano (saiz, caj permukaan, pemalar Hamaker) dan keadaan persekitaran (kepekatan asid humik dan pH) memainkan peranan yang penting dalam mengawal keadaan dan tingkah laku zarah nano pada medium sekitaran.

 

Kata kunci: Agregasi; DLVO; kestabilan; zarah nano

REFERENCES

Almusallam, A.A., Abdulraheem, Y.M., Shahat, M. & Korah, P. 2012. Aggregation behavior of titanium dioxide nanoparticles in aqueous environments. Journal of Dispersion Science and Technology 33: 728-738.

Baalousha, M. 2009. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of the Total Environment 407: 2093-2101.

Barisit, M., Atalay, S., Beskok, A. & Qian, S. 2014. Size dependent surface charge properties of silica nanoparticles. The Journal of Physical Chemistry 118(4): 1836-1842.

Bhatt, I. & Triphati, B.N. 2011. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82: 308-317.

Buffle, J., Wilkinson, K.J., Stoll, S., Fiella, M. & Zhang, J.W. 1998. A generalized description of aquatic colloidal interaction: The three-colloidal component approach. Environmental Science Technology 32: 2887-2899.

Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E. & Shon, H.K. 2013a. Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Research 47: 4585-4599.

Chekli, L., Phuntsho, S., Roy, M. & Shon, H.K. 2013b. Characterization of fe-oxide nanoparticles coated with humic acid and Suwannee river natural organic matter. Science of the Total Environment 461-462: 19-27.

De Mesquita, L.M.S., Lins, F.F. & Torem, M.L. 2003. Interaction of hydrophobic bacterium strain in a hematitenext term quartz flotation system. International Journal of Mineral Processing 71(1-4): 31-44.

Dickson, D., Liu, G., Li, C., Tachiev, G. & Cai, Y. 2012. Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticles concentration, humic acid and ionic strength. Science of the Total Environment 419: 171-177.

Elimelech, M., Gregory, J., Jia, X. & Williams, R.A. 1995. Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Oxford: Butterworth-Heinemann.

Erhayem, M. & Sohn, M. 2014. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Science of the Total Environment 470-471: 92-98.

Fritz, H.M. & Reinhanrd, N. 2010. Nanoparticles in the Water Cycle: Properties, Analysis, and Environmental Relevance. New York: Springer.

Ghosh, S., Hamid, M., Prasanta, B. & Xing, B.S. 2010. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids. Langmuir 26(2): 873-879.

Gottschalk, F., Sun, T. & Nowack, B. 2013. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution 181: 287-300.

Gottschalk, F. & Nowack, B. 2011. The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring 13: 1145-1155.

Hoecke, V.K., De Schamphelaere, K.A., Van Der Meeren, P., Smagghe, G. & Janssen, C.R. 2011. Aggregation and ecotoxicity of CeO nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environmental Pollution 159: 970-976.

Hotze, E.M. & Lowry, G.V. 2010. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality 39: 1909- 1924.

Hu, J-D., Zevi, Y., Kou, X-M., Xiao, J., Wang, X-J. & Jin, Y. 2010. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Science of the Total Environment 408: 3477-3489.

Illes, E. & Tombacz, E. 2006. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science 295: 115-123.

Keller, A.A., McFerran, S., Lazareva, A. & Suh, S. 2013. Global life cycle releases of engineered nanomaterials. Journal of Nanoparticles Research 15: 1-17.

Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin. & Lead, J.R. 2008. Environmental Toxicology and Chemistry 27(9): 1825-1851.

Kobayashi, M., Juillerat, F., Galletto, P., Bowen, P. & Borkovec, M. 2005. Aggregation and charging of colloidal silica particles: Effect of particle size. Langmuir 21: 5761-5769.

Labille, J. & Brant, J. 2010. Stability of nanoparticles in water. Nanomedicine 5(6): 985-998.

Lead, J.R. & Wilkinson, K.J. 2006. Aquatic colloids and nanoparticles: Current knowledge and future trends. Environmental Chemistry 3: 159-171.

Loosli, F., Coustumer, P.L. & Stoll, S. 2013. TiO2 Nanoparticles aggregation and disaggregation in presence of alginate and Suwannee river humic acids, pH and concentration effects on nanoparticle stability. Water Research 47: 6052-6063.

Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J. & Haynes, C.L. 2013. Toxicity of engineered nanoparticles in the environment. Analytical Chemistry 85(6): 3036-3049.

Medout-Marere, V. 2000. A simple experimental way of measuring the Hamaker constant A11 of divided solids by immersion calometry in apolar liquids. Journal Colloid of Interface Science 228(2): 434-437.

Nam, Y. & Lead, J.R. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment 400: 396-414.

Omar, F.M., Aziz, H.A. & Stoll, S. 2014a. Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid. Science of the Total Environment 468-469: 195-201.

Omar, F.M., Aziz, H.A. & Stoll, S. 2014b. Nanoparticle properties, behavior, fate in aquatic systems and characterization methods. Journal of Colloid Science and Biotechnology 3: 1-30.

Peters, R., Kramer, E., Agnes, G.O., Rivera, Z.E.H., Oegema, G., Tromp, P.C., Fokkink, R., Rietveld, A., Marvin, H.J.P., Weigel, S., Peijnenburg, A.A.C.M. & Bouwmeester, H. 2012. Presence of nano-sized silica during in vitro digestions of food containing silica as a food additive. ACS Nano 6(3): 2441-2451.

Philippe, A. & Schaumann, G.E. 2014. Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environmental Science & Technology 48(16): 8946-8962.

Romanello, M.B. & Fidalgo De Cortalezzi, M.M. 2013. An experimental study on the aggregation nanoparticles under environmentally relevant conditions. Water Research 47: 3887-3898.

Therezein, M., Thill, A. & Wiesner, M.R. 2014. Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Science of the Total Environment 485- 486: 309-318.

Tombacz, E., Dobos, A., Szekeres, M., Narres, H.D., Klumpp, E. & Dekany, I. 2000. Effect of pH and ionic strength on the interaction of humic acid with aluminium oxide. Colloid Polymer Science 278: 337-345.

Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & Von Der Kammer, F. 2014. Spot the difference: Engineered and natural nanoparticles in the environment-release, behavior and fate. Angewandte Chemie-International Edition 53(46): 12398-12419.

Yang, K., Lin, D. & Xing, B. 2009. Interactions of humic acid with nanosized inorganic oxides. Langmuir 25: 3571-3576.

Zhang, W-X. 2003. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 5: 323-332.

Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K. & Crittenden, J.C. 2008. Stability of commercial metal oxide nanoparticles in water. Water Research 42: 2204-2212.

 

*Corresponding author; email: nursuraya_ahmad@siswa.ukm.edu.my

 

 

 

 

 

previous