Sains Malaysiana 48(2)(2019): 451–471
http://dx.doi.org/10.17576/jsm-2019-4802-24
Mixed Convection in Lid-Driven Cavity
with Inclined Magnetic Field
(Perolakan Campuran dalam Rongga Berpenutup
Bergerak dengan Medan Magnet Condong)
N.A. BAKAR1, R. ROSLAN1, A. KARIMIPOUR2 & I. HASHIM3*
1Center of Research on
Computational Mathematics, Faculty of Applied Sciences & Technology, Universiti
Tun Hussein Onn Malaysia, KM1, Jln. Panchor, 84600 Muar, Johor Darul Takzim, Malaysia
2Department of Mechanical Engineering,
Faculty of Engineering, Najafabad Branch, Islamic Azad University, 8514143131
Isfahan, Iran
3School of Mathematical Sciences, Faculty
of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 31 March 2018/Accepted: 29
October 2018
ABSTRACT
Effects of magnetic field
inclination on fluid flow and heat transfer in a two-dimensional square cavity
are analyzed numerically. The vertical walls are well insulated, the bottom
wall is maintained at a cold temperature, while the top moving lid is kept at a
hot temperature. The finite volume method and SIMPLE algorithm
are employed to solve the dimensionless governing equations. The results are
presented by the profile of streamlines and isotherms, and the variation of
Nusselt number. Mixed convection flow is retarded by the presence of the
magnetic field and the average Nusselt number is an increasing function of the
magnetic field angle.
Keywords: Finite volume method;
inclined magnetic field; lid-driven; mixed convection
ABSTRAK
Kesan kecondongan medan magnet pada
aliran bendalir dan pemindahan haba dalam rongga empat segi dua dimensi
dianalisis secara berangka. Dinding menegak berpenebat dengan baik, dinding
bawah dikekalkan pada suhu sejuk, manakala penutup atas yang bergerak
dikekalkan pada suhu panas. Kaedah isi padu terhingga dan algoritma SIMPLE digunakan untuk menyelesaikan persamaan menakluk tanpa dimensi.
Keputusan dibentangkan dalam bentuk profil aliran dan isoterma dan variasi
nombor Nusselt. Kadar aliran perolakan campuran diperlahankan dengan kehadiran
medan magnet dan purata nombor Nusselt adalah fungsi menokok terhadap sudut
medan magnet.
Kata
kunci: Kaedah isi padu terhingga; medan magnet condong; penutup bergerak;
perolakan campuran
REFERENCES
Ahmed, S.E., Mansour, M.A. & Mahdy, A. 2013. MHD mixed
convection in an inclined lid-driven cavity with opposing thermal buoyancy
force: Effect of non-uniform heating on both side walls. Nuclear Engineering
and Design 265: 938-948.
Al-Salem, K., Oztop, H.F., Pop, I. & Varol, Y. 2012. Effects
of moving lid direction in MHD mixed convection in a linearly heated cavity. International
Journal of Heat and Mass Transfer 55: 1103-1112.
Bejan, A. 2013. Convection Heat Transfer. Fourth ed., New
York: John Wiley & Sons.
Biswas, N. & Manna, N.K. 2017a. Enhanced convective heat
transfer in lid-driven porous cavity with aspiration. International Journal
of Heat and Mass Transfer 114: 430- 452.
Biswas, N. & Manna, N.K. 2017b. Transport phenomena in a
sidewall-moving bottom-heated cavity using heatlines. Sadhana-Academy
Proceedings in Engineering Sciences 42(2): 193-211.
Biswas, N. & Manna, N.K. 2017c. Magneto-hydrodynamic Marangoni
flow in bottom-heated lid-driven cavity. Journal of Molecular Liquids 251:
249-266.
Biswas, N., Manna, N.K. & Mahapatra, P.S. 2016. Enhanced
thermal energy transport using adiabatic block inside lid-driven cavity. International
Journal of Heat and Mass Transfer 100: 407-427.
Chamkha, A.J. 2002. Hydromagnetic combined convection flow in a
vertical lid-driven cavity with internal heat generation or absorption. Numerical
Heat Transfer Part A 41: 529-546.
Garandet, J.P., Alboussiere, T. & Moreau, R. 1992. Buoyancy
driven convection in a rectangular enclosure with a transverse magnetic field. International
Journal of Heat and Mass Transfer 35: 741-748.
Gibanov, N.S., Sheremet, M.A., Oztop, H.F. & Hamdeh, N.A.
2017a. Effect of uniform inclined magnetic field on mixed convection in a
lid-driven cavity having a horizontal porous layer saturated with a ferrofluid.
International Journal of Heat and Mass Transfer 114: 1086-1097.
Gibanov, N.S., Sheremet, M.A., Oztop, H.F. & Nusier, O.K.
2017b. Convective heat transfer of ferrofluid in a lid-driven cavity with a
heat-conducting solid backward step under the effect of a variable magnetic
field. Numerical Heat Transfer A 72: 54-67.
Hussain, S., Ahmed, S.E. & Saleem, F. 2018a. Impact of
periodic magnetic field on entropy generation and mixed convection. Journal
of Thermophysics and Heat Transfer 32(4): 999- 1012.
Hussain, S., Oztop, H.F., Mehmood, K. & Hamdeh, N.A. 2018b.
Effects of inclined magnetic field on mixed convection in a nanofluid filled
double lid-driven cavity with volumetric heat generation or absorption using
finite element method. Chinese Journal of Physics 56(2): 484-501.
Hussain, S., Ahmad, S.,
Mehmood, K. & Sagheer, M. 2017. Effects of inclination angle on mixed
convective nanofluid flow in a double lid-driven cavity with discrete heat
sources. International Journal of Heat and Mass Transfer 106: 847- 860.
Hussain, S., Mehmood, K.
& Sagheer, M. 2016. MHD mixed convection and entropy generation of
water-alumina nanofluid flow in a double lid driven cavity with discrete
heating. Journal of Magnetism and Magnetic Materials 419: 140-155.
Iwatsu, R., Hyun, J.M. &
Kuwahara, K. 1993. Mixed convection in a driven cavity with a stable vertical
temperature gradient. International Journal of Heat and Mass Transfer 36:
1601- 1608.
Ishak, A. 2011. MHD boundary
layer flow due to an exponentially stretching sheet with radiation effect. Sains
Malaysiana 40(4): 391-395.
Kefayati, G.H.R.,
Gorji-Bandpy, M., Sajjadi, H. & Ganji, D.D. 2012. Lattice Boltzmann
simulation of MHD mixed convection in a lid-driven square cavity with linearly
heated wall. Scientia Iranica B 19(4): 1053-1065.
Khanafer, K.M. & Chamkha,
A.J. 1999. Mixed convection flow in a lid-driven enclosure filled with a
fluid-saturated porous medium. Heat and Mass Transfer 42: 2465-2481.
Koopaee, M.K. & Jelodari,
I. 2014. Numerical investigation of magnetic field inclination angle on
transient natural convection in an enclosure filled with nanofluid. Engineering
Computations 31: 1342-1360.
Malleswaran, A.,
Sivasankaran, S. & Bhuvaneswari, M. 2013. Effect of heating location and
size on MHD mixed convection in a lid-driven cavity. International Journal
of Numerical Methods for Heat & Fluid Flow 23: 867-881.
Mansour, M.A., Chamkha, A.J.,
Mohamed, R.A., Abd El-Aziz, M.M. & Ahmed, S.E. 2010. MHD natural convection
in an inclined cavity filled with a fluid saturated porous medium with heat
source in the solid phase. Nonlinear Analysis: Modelling and Control 15:
55-70.
Mehmood, K., Hussain, S.
& Sagheer, M. 2017. Numerical simulation of MHD mixed convection in
alumina-water nanofluid filled square porous cavity using KKL model: Effects of
non-linear thermal radiation and inclined magnetic field. Journal of
Molecular Liquids 238: 485-498.
Moallemi, M.K. & Jang,
K.S. 1992. Prandtl number effects on laminar mixed convection heat transfer in
a lid-driven cavity. International Journal of Heat and Mass Transfer 35:
1881-1892.
Mondal, S. & Sibanda, P.
2015. Unsteady double diffusive convection in an inclined rectangular
lid-driven enclosure with different magnetic field angles and non-uniform
boundary conditions. International Journal of Heat and Mass Transfer 90:
900-910.
Mondal, S. & Sibanda, P.
2018. An unsteady double diffusive natural convection in an inclined
rectangular enclosure with different angles of magnetic field. International
Journal of Computational Methods 13(4): 1641015.
Naganthran, K., Nazar, R.
& Pop, I. 2018. Effects of thermal radiation on mixed convection flow over
a permeable vertical shrinking flat plate in an Oldroyd-B fluid. Sains
Malaysiana 47(5): 1069-1076.
Nasrin, R. & Parvin, S.
2011. Hydromagnetic effect on mixed convection in a lid-driven cavity with
sinusoidal corrugated bottom surface. International Communications in Heat
and Mass Transfer 38: 781-789.
Oztop, H.F., Al-Salem, K.
& Pop, I. 2011. MHD mixed convection in a lid-driven cavity with corner
heater. International Journal of Heat and Mass Transfer 54: 3494-3504.
Oztop, H.F., Oztop, M. &
Varol, Y. 2009. Numerical simulation of magnetohydrodynamic buoyancy-induced
flow in a non-isothermally heated square enclosure. Communications in
Nonlinear Science and Numerical Simulation 14: 770-778.
Patankar, S.V. 1980. Numerical
Heat Transfer and Fluid Flow. Hemisphere, Washington DC: Taylor &
Francis.
Pirmohammadi, M., Ghasemi, M.
& Sheikhzadeh, G.A. 2009. Effect of a magnetic field on buoyancy-driven
convection in differentially heated square cavity. IEEE Transactions on
Magnetics 45: 407-411.
Rahman, M.M., Alim, M.A.
& Sarker, M.M.A. 2010. Numerical study on the conjugate effect of joule
heating and magnato-hydrodynamics mixed convection in an obstructed lid-driven
square cavity. International Communications in Heat and Mass Transfer 37:
524-534.
Rudraiah, N., Barron, R.M.,
Venkatachalappa, M. & Subbaraya, C.K. 1995. Effect of magnetic field on
free convection in a rectangular enclosure. International Journal of
Engineering Science 33: 1075-1084.
Sarris, I.E., Kakarantzas,
S.C., Grecos, A.P. & Vlachos, N.S. 2005. MHD natural convection in a
laterally and volumetrically heated square cavity. International Journal of
Heat and Mass Transfer 48: 3443-3453.
Selimefendigil, F. &
Chamkha, A.J. 2018. Magnetohydrodynamics mixed convection in a power law
nanofluid-filled triangular cavity with an opening using Tiwari and Das
nanofluid model. Journal of Thermal Analysis and Calorimetry 2018: 1-18.
Selimefendigil, F. &
Oztop, H.F. 2018. Modeling and optimization of MHD mixed convection in a
lid-driven trapezoidal cavity filled with aluminawater nanofluid: Effects of
electrical conductivity models. International Journal of Mechanical Sciences 136: 264-278.
Shekholeslami, M.,
Ashorynejad, H.R., Domairry, D. & Hashim, I. 2012. Investigation of the
laminar viscous flow in a semi-porous channel in the presence of uniform
magnetic field using Optimal Homotopy Asymptotic Method. Sains Malaysiana 41(10):
1281-1285.
Sivasankaran, S.,
Malleswaran, A., Lee, J. & Sundar, P. 2011. Hydro-magnetic combined
convection in a lid-driven cavity with sinusoidal boundary conditions on both
sidewalls. International Journal of Heat and Mass Transfer 54: 512-525.
Torrance, K., Davis, R.,
Eike, K., Gill, P., Gutman, D., Hsui, A., Lyons, S. & Zien, H. 1972. Cavity
flows driven by buoyancy and shear. Journal of Fluid Mechanics 51:
221-231.
Udhayakumar, S., Rejeesh,
A.D.A., Sekhar, T.V.S. & Sivakumar, R. 2016. Numerical investigation of
magnetohydrodynamic mixed convection over an isothermal circular cylinder in
presence of an aligned magnetic field. International Journal of Heat and
Mass Transfer 95: 379-392.
*Corresponding author; email:
ishak_h@ukm.edu.my