Sains Malaysiana 48(3)(2019):
523–531
http://dx.doi.org/10.17576/jsm-2019-4803-04
Structural Properties, Production,
and Commercialisation of Invertase
(Sifat Struktur, Pengeluaran dan Pengkomersialan Invertase)
WEI CHENG
PANG1,
AIZI
NOR
MAZILA
RAMLI1,2*
& NUR DINI JOHARI1
1Faculty of Industrial
Science & Technology, Universiti Malaysia
Pahang, Lebuhraya Tun
Razak, 26300 Gambang,
Kuantan, Pahang Darul Makmur,
Malaysia
2Bio Aromatic Research Centre of Excellence,
Universiti Malaysia Pahang, Lebuhraya Tun Razak,
26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
Received: 30 April
2018/Accepted: 8 January 2019
ABSTRACT
The knowledge gained from yeast
fermentation made invertase one of the
earliest exploited enzymes in human history. Invertase
functions as carbohydrases by hydrolysing
sucrose into its simplest unit. Extensive studies on invertase
have made it well-characterised through
the discovery of its existence in a variety of living organisms.
It is interesting to study the different types of invertase
from either the same or different origins as they might have distinct
properties and could possess unique characteristics. With the advancement
in technology, the three-dimensional structure, catalytic domain,
and mechanism of invertase action have been discovered. Furthermore, it is
important to understand how this enzyme has been produced via fermentation
or recombinant technology methods. Finally, invertase
has been employed in several important industries and its future
commercialisation is promising.
Keywords: Commercialisation;
invertase; production; structural analysis
ABSTRAK
Pengetahuan yang
diperoleh daripada penapaian ragi telah menjadikan invertase sebagai salah satu enzim
yang paling awal dieksploitasi
di dalam sejarah
manusia. Invertase berfungsi sebagai karbohidrase dengan menghidrolisis sukrosa kepada glukosa dan fruktosa. Pelbagai
kajian mengenai
invertase dan penemuannya
dalam pelbagai
organisma telah mendalamkan pemahaman tentang invertase. Kajian mengenai invertase daripada punca yang sama atau berlainan adalah menarik kerana ia terdapat
ciri-ciri yang berbeza
dan unik. Dengan
kemajuan bidang
teknologi, struktur tiga dimensi, domain pemangkin dan mekanisme
tindakan invertase
telah dikaji. Tambahan
pula, pengetahuan tentang
bagaimana enzim ini dihasilkan melalui kaedah penapaian atau kaedah rekombinan juga sangat penting.
Akhirnya, invertase
telah digunakan dalam pelbagai sektor industri dan pengkomersilannya adalah sangat baik.
Kata kunci: Analisis
struktur; invertase;
pemasaran; pengeluaran
REFERENCES
Aburigal, A.A.A., Elkhalifa,
E.A., Sulieman, A.M.E. & Elamin,
H.B. 2014. Extraction and partial kinetic properties of invertase
from Schizosaccharomyces pombe. International Journal of Food Science and Nutrition
Engineering 4(3): 80-85.
Addezio, F.D., Yoriyaz,
E.J., Maria, C. & Vitolo, M. 2014.
Sucrose hydrolysis by invertase using
a membrane reactor: Effect of membrane cut-off on enzyme performance.
Brazilian Journal of Pharmaceutical Sciences 50(2): 257-259.
Ahmed,
K., Valeem, E.E., Mahmood, T., Mahmood,
I. & Haq, Q.U. 2015. Optimal cultural conditions for industrial
enzyme production by using shaken flask technique of submerged fermentation.
FUUAST Journal of Biology 5(1): 21-26.
Aksu, K. & Kutsal, T. 1986. Lactic acid
production from molasses utilizing Lactobacillus delbrueckii
and invertase together. Biotechnology
Letters 8(3): 157-160.
Al-Hagar,
O.E.A., Ahmed, A.S. & Hassan, I. 2015. Invertase
production by irradiated Aspergillus niger
OSH5 using agricultural wastes as carbon source. British
Microbiology Research Journal 6(3): 135-146.
Alberto,
F., Jordi, E., Henrissat, B. & Czjzek, M. 2006. Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide
substrate raffinose. Biochemical Journal
395(3): 457-462.
Alberto,
F., Bignon, C., Sulzenbacher,
G., Henrissat, B. & Czjzek,
M. 2004. The three-dimensional structure of invertase
(β-fructosidase) from Thermotoga
maritima reveals a bimodular
arrangement and an evolutionary relationship between retaining and
inverting glycosidases. Journal of Biological Chemistry 279(18):
18903-18910.
Alméciga-Díaz, C.J., Gutierrez, A.M., Bahamon, I., Rodríguez, A., Rodríguez, A.M. & Sánchez,
O.F. 2011. Computational analysis of the fructosyltransferase
enzymes in plants, fungi and bacteria. Gene 484(1-2): 26-34.
Altenbach, D. & Ritsema,
T. 2007. Structure-function relations and evolution of fructosyltransferases.
In Recent Advances in Fructooligosaccharides
Research, edited by Shiomi, N., Benkeblia, N. & Onodera, N. Kerala, India: Signpost. pp.
135-156.
Alves,
J.N.O., Jorge, J.A. & Guimarães, L.H.S.
2013. Production of invertases by anamorphic
(Aspergillus nidulans) and teleomorphic
(Emericela nidulans)
fungi under submerged fermentation using rye flour as carbon source.
Advances in Microbiology 3: 421-429.
Ashraf,
H. & Bilal, Z.E.H. 2015. Biosynthesis, partial purification
and characterization of invertase through
carrot (Daucus carota L.)
peels. Journal of Biochemical Technology 6(1): 867-874.
Ayre, G.L. 1967. The relationships between food and digestive enzymes
in five species of ants (Hymenoptera: Formicidae).
The Canadian Entomologist 99(4): 408-411.
Bagal-Kestwal, D., Kestwal,
R.M. & Chiang, B.H. 2015. Invertase-nanogold
clusters decorated plant membranes for fluorescence-based sucrose
sensor. Journal of Nanobiotechnology
13: 30.
Belcarz, A., Ginalska, G., Lobarzewski, J. &
Penel, C. 2002. The novel non-glycosylated
invertase from Candida utilis
(the properties and the conditions of production and purification).
Biochimica et Biophysica
Acta - Protein Structure and Molecular
Enzymology 1594(1): 40-53.
Benkeblia,
N., Onodera, S., Yoshihira, T., Kosaka,
S. & Shiomi, N. 2004. Effect of temperature on soluble invertase activity, and glucose, fructose and sucrose status
of onion bulbs (Allium cepa) in
store. International Journal of Food Sciences and Nutrition 55(4):
325-331.
Bergh, M.L., Cepko, C.L., Wolf, D. & Robbins, P.W. 1987. Expression
of the Saccharomyces cerevisiae glycoprotein invertase
in mouse fibroblasts: Glycosylation, secretion, and enzymatic activity.
In Proceedings of the National Academy of Sciences of the United
States of America 84: 3570-3574.
Bhatti, H.N., Asgher, M., Abbas, A., Nawaz, R. & Sheikh, M.A. 2006.
Studies on kinetics and thermostability
of a novel acid invertase from Fusarium
solani. Journal of Agricultural
and Food Chemistry 54(13): 4617-4623.
Bujacz, A., Jedrzejczak-Krzepkowska, M., Bielecki,
S., Redzynia, I. & Bujacz,
G. 2011. Crystal structures of the apo
form of β-fructofuranosidase from
Bifidobacterium longum
and its complex with fructose. FEBS Journal 278(10):
1728-1744.
Carlos Martínez, d.R. 1990. Dietary, phylogenetic,
and ecological correlates of intestinal sucrase
and maltase activity in birds. Physiological Zoology 63(5):
987-1011.
Carnie, J.A. &
Porteous, J.W. 1962. The invertase
activity of rabbit small intestine. Biochemical Journal 85:
450-456.
Chandra, A., Jain,
R. & Solomon, S. 2012. Complexities of invertases
controlling sucrose accumulation and retention in sugarcane. Current
Science 102(6): 857-866.
Chaudhary, S., Sagar, S., Kumar, M., Sengar, R.S.
& Tomar, A. 2015. The use of enzymes
in food processing: A review. South Asian Journal of Food Technology
and Environment 1(3&4): 190-210.
Chen, T.H., Huang,
Y.C., Yang, C.S., Yang, C.C., Wang, A.Y. & Sung, H.Y. 2009.
Insights into the catalytic properties of bamboo vacuolar invertase
through mutational analysis of active site residues. Phytochemistry
70(1): 25-31.
Deryabin, A.N., Berdichevets, I.N., Burakhanova,
E.A. & Trunova, T.I. 2014. Characteristics
of extracellular invertase of Saccharomyces
cerevisiae in heterologous expression of the Suc2 gene in Solanum tuberosum plants.
Biology Bulletin 41(1): 24-30.
Desai, P.N., Shrivastava, N. & Padh, H. 2010.
Production of heterologous proteins in plants: Strategies for optimal
expression. Biotechnology Advances 28(4): 427-435.
Dominguez, A.L.,
Rodrigues, L.R., Lima, N.M. & Teixeira, J.A. 2013. An overview
of the recent developments on fructooligosaccharide
production and applications. Food and Bioprocess Technology 6(12):
1-14.
Dorn, M.E., Silva,
M.B., Buriol, L.S. & Lamb, L.C. 2014.
Three-dimensional protein structure prediction: Methods and computational
strategies. Computational Biology and Chemistry 53: 251-276.
Esawy, M.A., Kansoh, A.L., Kheiralla, Z.H., Ahmed,
H.E., Kahil, T.A.K. & El-Hameed, E.K.
2014. Production and immobilization of halophilic invertase
produced from honey isolate Aspergillus niger
EM77 (KF774181). International Journal of Biotechnology for
Wellness Industries 3: 36-45.
Fotopoulos, V. 2005.
Plant invertases: Structure, function
and regulation of a diverse enzyme family. Journal of Biological
Research 4: 127-137.
Galant, A.L., Kaufman,
R.C. & Wilson, J.D. 2015. Glucose: Detection and analysis. Food
Chemistry 188: 149-160.
Gomes, A.R., Byregowda, S.M., Veeregowda, B.M.
& Balamurugan, V. 2016. An overview
of heterologous expression host systems for the production of recombinant
proteins. Advances in Animal and Veterinary Sciences 4(7):
346-356.
Guimarães, L.H.S. 2012. Carbohydrates
from biomass: Sources and transformation by microbial enzymes. In
Carbohydrates - Comprehensive Studies on Glycobiology
and Glycotechnology, edited by Chang,
C.F. Belgium: Intech. pp. 441-458.
Gurung, N., Ray, S., Bose,
S. & Rai, V. 2013. A broader view: Microbial enzymes and their
relevance in industries, medicine, and beyond. BioMed
Research International 2013: 329121.
Heil, M., Büchler, R. & Boland, W. 2005. Quantification of invertase activity in ants under field conditions. Journal
of Chemical Ecology 31(2): 431-437.
Hsiao, C.C., Fu,
R.H. & Sung, H.Y. 2002. A novel bound form of plant invertase
in rice suspension cells. Botanical Bulletin of Academia Sinica
43: 115-122.
Hsieh, C.W., Liu,
L.K., Yeh, S.H., Chen, C.F., Lin, H.I.,
Sung, H.Y. & Wang, A.Y. 2006. Molecular cloning and functional
identification of invertase isozymes from green bamboo Bambusa
oldhamii. Journal of Agricultural
and Food Chemistry 54: 3101-3107.
Khandekar, D.C., Palai, T., Agarwal, A. & Bhattacharya, P.K. 2014. Kinetics
of sucrose conversion to fructo-oligosaccharides
using enzyme (invertase) under free condition.
Bioprocess and Biosystems Engineering
37(12): 2529-2537.
Kotwal, S.M. & Shankar,
V. 2009. Immobilized invertase. Biotechnology
Advances 27(4): 311-322.
Kulshrestha, S., Tyagi, P., Sindhi, V. & Yadavilli,
K.S. 2013. Invertase and its applications
- a brief review. Journal of Pharmacy Research 7(9): 792-797.
Kumar, R. & Kesavapillai, B. 2012. Stimulation of extracellular invertase production from spent yeast when sugarcane pressmud used as substrate through solid state fermentation.
SpringerPlus 1: 81.
Kurakake, M., Masumoto, R.,
Maguma, R., Kamata,
A., Saito, E., Ukita, N. & Komaki,
T. 2010. Production of fructooligosaccharides
by β-fructofuranosidases from Aspergillus oryzae
KB. Journal of Agricultural and Food Chemistry 58(1):
488-492.
Lammens, W., Le Roy, K.,
Schroeven, L., Van Laere, A., Rabijns, A. & Van den Ende,
W. 2009. Structural insights into glycoside hydrolase family 32
and 68 enzymes: Functional implications. Journal of Experimental
Botany 60(3): 727-740.
Lammens, W., Le Roy, K.,
Van Laere, A., Rabijns,
A. & Van den Ende, W. 2008. Crystal
structures of Arabidopsis thaliana cell-wall invertase
mutants in complex with sucrose. Journal of Molecular Biology
377(2): 378-385.
Li, S., Yang, X.,
Yang, S., Zhu, M. & Wang, X. 2012. Technology prospecting on
enzymes: Application, marketing and engineering. Computational
and Structural Biotechnology Journal 2(3): e201209017.
Lincoln, L. &
More, S.S. 2017. Bacterial invertases:
Occurrence, production, biochemical characterization, and significance
of transfructosylation. Journal of Basic Microbiology 57(10):
803-813.
Liu, C., Xu, Z., Cai, S. & Xiong, Z. 2015. CDna cloning, heterologous expression and characterization
of a cell wall invertase from copper tolerant
population of Elsholtzia haichowensis. Biologia
(Poland) 70(8): 1063-1069.
Madhanasundareswari,
K. & Jeyachitra, K. 2015. Production
and optimization of growth conditions for invertase
enzyme by Aspergillus in solid state fermentation (SSF) using
carrot peel as substrate. SIRJ-APBBP 2(1): 16-22.
Maiorano, A.E., Piccoli, R.M., da Silva, E.S. & de Andrade Rodrigues,
M.F. 2008. Microbial production of fructosyltransferases
for synthesis of pre-biotics. Biotechnology
Letters 30(11): 1867-1877.
Marepally, L. 2017. Purification
and characterization of invertase from
the midgut of fifth instar larvae of Anthereae mylitta Drury
(Daba TV). International Journal of
Recent Scientific Research 8(6): 17330-17334.
Mehta, K. & Duhan, J.S. 2014. Production of invertase
from Aspergillus niger using fruit
peel waste as a substrate. International Journal of Pharma and
Bio Sciences 5(2): 353-360.
Michel, M.R., Rodríguez-Jasso,
R.M., Aguilar, C.N., Gonzalez- Herrera, S.M., Flores- Gallegos,
A.C. & Rodríguez-Herrera, R. 2016. Fructosyltransferase
sources, production, and applications for prebiotics. In Production
Probiotics and Prebiotics in Human Nutrition and Health, edited
by Rao, V. Belgium: Intech. pp. 169-189.
Mohandesi, N., Siadat, S.O.R., Haghbeen, K. &
Hesampour, A. 2016. Cloning and expression
of Saccharomyces cerevisiae SUC2 gene in yeast platform and
characterization of recombinant enzyme biochemical properties. 3
Biotech 6: 128-138.
Nadeem, H., Rashid,
M.H., Siddique, M.H., Azeem, F., Muzammil, S., Javed, M.R., Ali,
M.A., Rasul, I. & Riaz,
M. 2015. Microbial invertases: A review
on kinetics, thermodynamics, physiochemical properties. Process
Biochemistry 50(8): 1202-1210.
Nisha, S., Karthick, A. & Gobi, N. 2012. A review on methods, application
and properties of immobilized enzyme. Chemical Science Review
and Letters 1(3): 148-155.
Niu, J.Q., Wang, A.Q.,
Huang, J.L., Yang, L.T. & Li, Y.R. 2014. Isolation, characterization
and promoter analysis of cell wall invertase
gene SoCIN1 from sugarcane (Saccharum
Spp.). Sugar Tech 17(1): 65-76.
Ohara, A., de Castro,
R.J.S., Nishide, T.G., Dias, F.F.G., Bagagli, M.P. & Sato, H.H. 2015. Invertase
production by Aspergillus niger under
solid state fermentation: Focus on physical-chemical parameters,
synergistic and antagonistic effects using agro-industrial wastes.
Biocatalysis and Agricultural
Biotechnology 4(4): 645-652.
Palomares, L.A., Estrada-Mondaca, S. & Ramírez, O.T.
2004. Production of recombinant proteins: Challenges and solutions.
In Recombinant Gene Expression, edited by Balbás,
P. & Lorence, A. Methods in Molecular Biology 267: 15-52.
Qureshi, A.S., Khushk, I., Ali, C.H., Majeed, H.
& Ahmad, A. 2017. Production of invertase
from Saccharomyces cerevisiae Angel
using date syrup as a cost effective carbon source. African Journal
of Biotechnology 16(15): 777-781.
Raju, A.I.C.H., Pulipati, K. & Jetti, A. 2016.
Production of invertase by Aspergillus
niger under solid state fermentation using orange fruit
peel as substrate. Advances in Crop Science and Technology 4:
247.
Rashad, M.M. &
Nooman, M.U. 2009. Production, purification
and characterization of extracellular invertase
from Saccharomyses cerevisiae NRRL Y-12632 by solid-state
fermentation of red carrot residue. Australian Journal of Basic
and Applied Sciences 3(3): 1910-1919.
Ravindran, R. & Jaiswal, A. 2016. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review.
Bioengineering 3(4): 30.
Renge, V.C., Khedkar, S.V. & Nandurkar, N.R.
2012. Enzyme synthesis by fermentation method: A review. Scientific
Reviews and Chemical Communications 2(4): 585-590.
Ricks, B.L. &
Vinson, S.B. 1972. Digestive enzymes of the imported fire ant, Solenopsis richteri (Hymenoptera:
Formicidae). Entomologia
Experimentalis et Applicata
15: 329-334.
Sainz-Polo, M.A., Ramírez-Escudero, M., Lafraya, A.,
González, B., Marín-Navarro, J., Polaina, J. & Sanz-Aparicio,
J. 2013. Three-dimensional structure of Saccharomyces invertase: Role of a non-catalytic domain in oligomerization and substrate specificity. Journal of Biological
Chemistry 288(14): 9755-9766.
Schroeven, L., Lammens, L., Van Laere, A. &
Van den Ende, W. 2008. Transforming wheat
vacuolar invertase into a high affinity sucrose: Sucrose 1-fructosyltransferase.
New Phytologist 180(4): 822-831.
Shah, H.S., Patel,
C.M. & Parikh, S.C. 2016. Production of invertase
from bacteria by using waste jaggery.
The Microbes 3: 19-23.
Shankar, T., Thangamathi, P., Rama, R. & Sivakumar,
T. 2014a. Characterization of invertase
from Saccharomyces cerevisiae MK obtained from toddy sample.
Journal of Bioprocessing and Chemical Engineering 2(1): 1-6.
Shankar, T., Thangamathi, P., Rama, R. & Sivakumar,
T. 2014b. Characterization of invertase
from Saccharomyces crevisiae MTCC
170. African Journal of Microbiology Research 8(13): 1385-1393.
Shinde, V., Deshmukh, S. & Bhoyar, M.G.
2015. Applications of major enzymes in food industry. Indian
Farmer 2(6): 497-502.
Sundarram, A. & Murthy,
T.P.K. 2014. α -Amylase production and applications: A review.
Journal of Applied & Environmental Microbiology 2(4):
166-175.
Takegawa, K., Tohda, H., Sasaki, M., Idiris, A.,
Ohashi, T., Mukaiyama,
H., Giga-Hama, Y. & Kumagai, H. 2009.
Production of heterologous proteins using the fission-yeast (Schizosaccharomyces
pombe) expression system. Biotechnology
and Applied Biochemistry 53(4): 227-235.
Tauzin, A.S. &
Giardina, T. 2014. Sucrose and invertases,
a part of the plant defense response to the biotic stresses. Frontiers
in Plant Science 5: 1-8.
Ueno, T., Ozawa,
Y., Ishikawa, M., Nakanishi, K. & Kimura, T. 2003. Lactic acid
production using two food processing wastes, canned pineapple syrup
and grape invertase, as substrate and enzyme. Biotechnology Letters
25(7): 573-577.
Uma, C., Gomathi, D., Ravikumar, G., Kalaiselvi, M. & Palaniswamy,
M. 2012. Production and properties of invertase
from a Cladosporium cladosporioides
in SmF using pomegranate peel waste
as substrate. Asian Pacific Journal of Tropical Biomedicine 2:
605-611.
Uma, C., Gomathi, D. & Gopalakrishnan,
V.K. 2010. Fungal invertase as aid for
production of ethanol from sugarcane bagasse. Research Journal
of Microbiology 5(10): 980-985.
Voegele, R.T., Wirsel,
S., Möll, U., Lechner,
M. & Mendgen, K. 2006. Cloning and
characterization of a novel invertase
from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and
pathogen invertases in the course of infection.
Molecular Plant-Microbe Interactions 19(6): 625-634.
Van Wyk, N., Trollope, K.M., Steenkamp,
E.T., Wingfield, B.D. & Volschenk,
H. 2013. Identification of the gene for β-fructofuranosidase
from Ceratocystis moniliformis
CMW 10134 and characterization of the enzyme expressed in Saccharomyces
cerevisiae. BMC Biotechnology 13: 100.
Xie, J., Cai, K., Hu, H.X., Jiang, Y.L., Yang, F., Hu, P.F., Cao, D.D.,
Li, W.F., Chen, Y. & Zhou, C.Z. 2016. Structural analysis of
the catalytic mechanism and substrate specificity of Anabaena
alkaline invertase InvA reveals a novel glucosidase.
Journal of Biological Chemistry 291(49): 25667-25677.
Yao, Y., Wu, X.H.,
Geng, M.T., Li, R.M., Liu, J., Hu, X.W.
& Guo, J.C. 2014. Cloning, 3D modeling and expression analysis
of three vacuolar invertase genes from
cassava (Manihot esculenta
Crantz). Molecules 19(5): 6228-6245.
Yesilirmak, F. & Sayers,
Z. 2009. Heterelogous expression of plant
genes. International Journal of Plant Genomics 2009: 296482.
Zárate, V. & Belda, F. 1996. Characterization of the heterologous invertase produced by Schizosaccharomyces
pombe from the SUC2 gene of Saccharomyces
cerevisiae. The Journal of Applied Bacteriology 80(1):
45-52.
Zhang, J., Scrivener,
A.M., Slaytor, M. & Rose, H.A. 1993.
Diet and carbohydrase activities in three
cockroaches, Calolampra elegans
Roth and Princis, Geoscapheus
dilatatus Saussure and Panesthia
cribrata Saussure. Comparative
Biochemistry and Physiology - Part A: Physiology 104(1): 155-161.
Zouaoui, B., Ghalem, B.R., Djillali, B. &
Fatima, S. 2016. Characterization of partially purified extracellular
thermostable invertase by Streptococcus
Sp. isolated from the date. Bulletin of Environment, Pharmacology
and Life Sciences 5(9): 65-72.
*Corresponding author; email: aizinor@ump.edu.my
|