Sains Malaysiana 48(3)(2019): 533–541

http://dx.doi.org/10.17576/jsm-2019-4803-05

 

Assessment of Biochemical Changes in Spinach (Spinacea oleracea L.) Subjected to Varying Water Regimes

(Penilaian Perubahan Biokimia dalam Bayam (Spinacea oleracea L.) Tertakluk kepada Rejim Air Berbeza)

 

MUNIFA JABEEN1, NUDRAT AISHA AKRAM1*, MUHAMMAD ASHRAF2,3 & ANIQA AZIZ1

 

1Department of Botany, Government College University, Faisalabad, Pakistan

 

2Pakistan Science Foundation, Islamabad, Pakistan

 

3Department of Botany and Microbiology, King Saud University, Saudi Arabia

 

Received: 4 January 2018/Accepted: 30 December 2018

 

ABSTRACT

It is known that leafy vegetables including spinach (Spinacea oleracea L.) contain relatively high amount of water, therefore, their water requirement during the life cycle is comparatively more than the other vegetables. In addition, there is an association between osmoprotection and antioxidants with reference to drought stress tolerance. Keeping in mind these facts, the present study was conducted to assess the changes in plant growth, osmoprotectants, chlorophyll pigments and activities/levels of antioxidative system in spinach (Spinacea oleracea L.) grown under varying water deficit regimes with 40%, 60%, 80% and 100% field capacity (FC). Imposition of varying water regimes significantly decreased shoot and root fresh and dry weights, shoot plus root lengths, and chlorophyll b contents of spinach plants. Increase in proline, glycinebetaine (GB), total phenolics, ascorbic acid and malondialdehyde (MDA) contents as well as the activities of antioxidant enzymes including superoxide dismutase, peroxidase and catalase were observed in the spinach plants particularly at 40% FC. The most effective level of water stress for elevating the proline, GB and antioxidant levels/activities was observed at 40% FC followed by 60% FC. Hence, the results of this study suggested that upregulation of antioxidants and osmoprotectants is positively associated with the drought tolerance of spinach which depends on the severity of water stress level. These results can be used to narrow the gap between selection of plant species and requirement of irrigated water for the crops grown on dry land areas.

 

Keywords: Antioxidants; osmoprotection; reactive oxygen species; spinach; water stress

 

ABSTRAK

Adalah diketahui bahawa sayur-sayuran berdaun termasuk bayam (Spinacea oleracea L.) mengandungi jumlah air yang agak tinggi, oleh itu, mereka memerlukan lebih air sepanjang kitaran hidup berbanding sayur-sayuran lain. Di samping itu, terdapat hubungan antara osmoperlindungan dan antioksidan berkaitan toleransi tekanan kemarau. Dengan mengambil kira fakta tersebut, kajian ini dijalankan untuk menilai perubahan dalam pertumbuhan tanaman, osmoperlindungan, pigmen klorofil serta aktiviti/tahap sistem antioksidatif pada bayam (Spinacea oleracea L.) yang ditanam di bawah rejim defisit air berbeza dengan 40%, 60%, 80% dan 100% kapasiti lapangan (FC). Pengenaan rejim air yang berbeza dengan ketara mengurangkan berat segar dan kering pucuk dan akar, panjang pucuk dan akar serta kandungan klorofil b pada pokok bayam. Pertambahan kandungan prolin, glisinbetain (GB), jumlah fenolik, asid askorbik dan malondialdehid (MDA) serta aktiviti enzim antioksida termasuk superoksida dismutase, peroksidase dan katalase telah diperhatikan pada tanaman bayam terutamanya pada 40% FC. Tahap tekanan air paling berkesan untuk meningkatkan tahap/aktiviti proline, GB dan antioksidan diperhatikan pada 40% FC diikuti 60% FC. Oleh itu, keputusan kajian ini mencadangkan pengawalaturan atas antioksidan dan osmoperlindungan dikaitkan secara positif dengan toleransi kemarau oleh bayam yang bergantung pada keterukan aras tekanan air. Keputusan ini boleh digunakan untuk mengurangkan jurang antara pemilihan spesies tumbuhan dan keperluan pengairan untuk tanaman yang ditanam di kawasan tanah kering.

 

Kata kunci: Antioksidan; bayam; osmoperlindungan; spesies oksigen reaktif; tekanan air

REFERENCES

Akram, N.A., Waseem, M., Ameen, R. & Ashraf, M. 2016. Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: Some key physio-biochemical traits. Acta Physiologia Plantrum 38: 3.

Aranjuelo, I., Molero, G., Erice, G., Avice, J.C. & Nogués, S. 2010. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany 62: 111-123.

Arnon, D.I. 1949. Copper enzymes in isolated chloroplast, polyphenol oxidase in (Beta vulgaris L.). Journal of Plant Physiology 24: 1-15.

Ashraf, M. 2010. Inducing drought tolerance in plants: Some recent advances. Advances in Biotechnology 28: 169-183.

Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27: 84-93.

Ashraf, M. & Harris, P.J.C. 2013. Photosynthesis under stressful environments: An overview. Photosynthetica 51: 163-190.

Ashraf, M. & Foolad, M.R. 2007. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environmental and Experimental Botany 59: 206-216.

Bates, L.S., Waldren, R.P. & Teare, I.D. 1973. Rapid determination of free proline for water stress. Plant Soil 39: 205-207.

Cakmak, I. & Horst, J.H. 1991. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83: 463-468.

Chance, M. & Maehly, A.C. 1955. Assay of catalases and peroxidases. Methods in Enzymology 2: 764-817.

Cranston, L.M., Kenyon, P.R., Morris, S.T., Lopez-Villalobos, N. & Kemp, P.D. 2016. Morphological and physiological responses of plantain (Plantago lanceolata) and chicory (Cichorium intybus) to water stress and defoliation frequency. Journal of Agronomy and Crop Sciences 202: 13-24.

Darvishan, M., Tohidi-Moghadam, H.R. & Zahedi, H. 2013. The effect of foliar application of ascorbic acid (vitamin C) on physiological and biochemical changes of corn (Zea mays L.) under irrigation withholding in different growth stages. Maydica 58: 195-200.

De Gara, L., De Pinto, M.C., Moliterni, V.M. & D’egidio, M.G. 2003. Redox regulation and storage processes during maturation in kernels of Triticum durum. Journal of Experimental Botany 54: 249-258.

Díaz-López, L., Gimeno, V., Simón, I., Martínez, V., Rodríguez- Ortega, W.M. & García-Sánchez, F. 2012. Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management 105: 48-56.

Dolatabadian, A., Modarressanavy, S.A.M. & Asilan, K.S. 2010. Effect of ascorbic acid foliar application on yield, yield component and several morphological traits of grain corn under water deficit stress conditions. Notulae Scientia Biologicae 2: 45-50.

Du, S.T., Liu, Y., Zhang, P., Liu, H.J., Zhang, X.Q. & Zhang, R.R. 2015. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chemistry 173: 905-911.

Ejaz, B., Sajid, Z.A. & Aftab, F. 2012. Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp., hybrid cv. HSF-240 under salt stress. Turkish Journal of Biology 36: 630-640.

Ekinci, M., Ors, S., Sahin, U., Yildirim, E. & Dursun, A. 2015. Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Journal of Communications in Soil Sciences and Plant Analysis 46: 327-342.

Frary, A., Göl, D., Keles, D., Ökmen, B., Pinar, H., Sigva, H.Ö., Yemenicioglu, A. & Doganlar, S. 2010. Salt tolerance in Solanum pennellii: Antioxidant response and related QTL. BMC Plant Biology 10: 58.

Galahitigama, G.A.H. & Wathugala, D.L. 2016. Pre-sowing seed treatments improves the growth and drought tolerance of rice (Oryza sativa L.). Imperial Journal of Interdisciplinary Research 2(9): 1074-1077.

Giannopolitis, C.N. & Ries, S.K. 1977. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology 59: 309-314.

Grieve, C.M. & Grattan, S.R. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70: 303-307.

Hameed, A. & Iqbal, N. 2014. Chemo-priming with mannose, mannitol and H2O2 mitigate drought stress in wheat. Cereal Research Communications 42: 450-462.

Hammad, S.A.R. & Ali, O.A.M. 2014. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences 59: 133-145.

Julkunen-Tiitto, R. 1985. Phenolic constituents in the leaves of north willows: Methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry 33: 213-217.

Khaki-Moghadam, A. & Rokhzadi, A. 2015. Growth and yield parameters of safflower (Carthamus tinctorius) as influenced by foliar methanol application under well-watered and water deficit conditions. Environmental and Experimental Biology 13: 93-97.

Kosar, F., Akram, N.A. & Ashraf, M. 2015. Exogenously applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. South African Journal of Botany 96: 71-77.

Kusaka, M., Ohta, M. & Fujimura, T. 2005. Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiologia Plantarum 125: 474-489.

Lamhamdi, M., Bakrim, A., Bouayad, N., Aarab, A. & Lafont, R. 2013. Protective role of a methanolic extract of spinach (Spinacia oleracea L.) against Pb toxicity in wheat (Triticum aestivum L.) seedlings: Beneficial effects for a plant of a nutraceutical used with animals. Environmental Science and Pollution Research 20: 7377-7385.

Lehtimäki, N., Lintala, M., Allahverdiyeva, Y., Aro, E.M. & Mulo, P. 2010. Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. Journal of Plant Physiology 167: 1018-1022.

Leskovar, D.I., Agehara, S., Yoo, K. & Pascual-Seva, N. 2012. Crop coefficient-based deficit irrigation and planting density for onion: Growth, yield, and bulb quality. Horticultural Science 47: 31-37.

Ma, D., Sun, D., Wang, C., Li, Y. & Guo, T. 2014. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry 80: 60-66.

Maevskaya, S.N. & Nikolaeva, M.K. 2013. Response of antioxidant and osmoprotective systems of wheat seedlings to drought and rehydration. Russian Journal of Plant Physiology 60: 343-350.

Mittova, V., Volokita, M., Guy, M. & Tal, M. 2000. Activities of SOD and the ascorbate- lutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum 110: 42-51.

Moussa, H.R. & Abdel-Aziz, S.M. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science 1: 31-36.

Mukherjee, S.P. & Choudhuri, M.A. 1983. Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum 58: 166-170.

Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D. & Altmann, T. 2015. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. Journal of Experimental Botany 66: 5467-5480.

Noreen, S., Ashraf, M., Hussain, M. & Jamil, A. 2009. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany 41: 473-479.

Nounjan, N., Nghia, P.T. & Theerakulpisut, P. 2012. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of Plant Physiology 169: 596-604.

Patel, P.K. & Aranjan, A.H. 2013. Differential sensitivity of chickpea genotype to salicylic acid and drought stress during pre-anthesis: Effects on total chlorophyll, phenolics, seed protein, and protein profiling. An International Quarterly Journal of Biology & Life Sciences 8: 569-574.

Raza, M.A.S., Saleem, M.F., Khan, I.H., Shah, G.M. & Raza, A. 2016. Bio-economics of foliar applied GB and k on drought stressed wheat (Triticum aestivum L.). ARPN Journal of Agricultural and Biological Sciences 11: 1.

Raza, M.A.S., Saleem, M.F., Shah, G.M., Khan, I.H. & Raza, A. 2014. Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. Journal of Soil Sciences and Plant Nutrition 14: 348-364.

Razzaq, A., Ali, Q., Qayyum, A., Mahmood, I., Ahmad, M. & Rasheed, M. 2013. Physiological responses and drought resistance and drought resistance index of nine wheat (Triticum aestivum L.) cultivars under different moisture conditions. Pakistan Journal of Botany 45: 151-155.

Shafiq, S., Akram, N.A. & Ashraf, M. 2015. Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Scientia Horticulturae 185: 68-75.

Shafiq, S., Akram, N.A., Ashraf, M. & Arshad, A. 2014. Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiologia Plantarum 36: 539-1553.

Simon-Grao, S., Garcia-Sanchez, F., Alfosea-Simon, M., Simon, I., Lidon, V. & Ortega, W.M.R. 2016. Study on the foliar application of fitomare® on drought tolerance of tomato plants. International Journal of Plant Animal & Environmental Sciences 6: 15-21.

Srivastava, N. & Kumar, G. 2014. Influence of drought stress on cytological behavior of green manure crop Sesbania cannabina Poir. Cytologia 79: 325-329.

Terzi, R. & Kadioglu, A. 2006. Drought stress tolerance and antioxidant enzyme system in Ctenanthe setosa. Acta Biologica Cracoviensia Series Botanica 48: 89-96.

Velikova, V., Yordanov, I. & Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective roles of exogenous polyamines. Plant Sciences 151: 59-66.

Xu, C. & Leskovar, D.I. 2015. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticultuae 183: 39-47.

Yadegari, L.Z., Heidari, R., Rahmani, F. & Khara, J. 2014. Drought tolerance induced by foliar application of abscisic acid and sulfonamide compounds in tomato. Journal of Stress Physiology and Biochemistry 10: 326-334.

Yasmeen, A., Basra, S.M.A., Wahid, A., Farooq, M., Nouman, W., Rehman, H.U. & Hussain, N. 2013. Improving drought resistance in wheat (Triticum aestivum) by exogenous application of growth enhancers. International Journal of Agriculture & Biology 15: 1307-1312.

 

*Corresponding author; email: nudrataauaf@yahoo.com

 

 

 

 

 

previous