Sains Malaysiana 48(3)(2019):
533–541
http://dx.doi.org/10.17576/jsm-2019-4803-05
Assessment of Biochemical Changes in Spinach
(Spinacea oleracea
L.) Subjected to Varying Water Regimes
(Penilaian Perubahan Biokimia dalam Bayam (Spinacea
oleracea L.) Tertakluk
kepada Rejim Air Berbeza)
MUNIFA JABEEN1,
NUDRAT
AISHA
AKRAM1*,
MUHAMMAD
ASHRAF2,3
& ANIQA AZIZ1
1Department of Botany,
Government College University, Faisalabad, Pakistan
2Pakistan Science
Foundation, Islamabad, Pakistan
3Department of Botany
and Microbiology, King Saud University, Saudi Arabia
Received: 4 January 2018/Accepted:
30 December 2018
ABSTRACT
It is known that leafy vegetables
including spinach (Spinacea oleracea L.) contain relatively high amount of water, therefore,
their water requirement during the life cycle is comparatively more
than the other vegetables. In addition, there is an association
between osmoprotection and antioxidants with reference to drought
stress tolerance. Keeping in mind these facts, the present study
was conducted to assess the changes in plant growth, osmoprotectants,
chlorophyll pigments and activities/levels of antioxidative
system in spinach (Spinacea oleracea
L.) grown under varying water deficit regimes with 40%, 60%,
80% and 100% field capacity (FC). Imposition of varying water regimes
significantly decreased shoot and root fresh and dry weights, shoot
plus root lengths, and chlorophyll b
contents of spinach plants. Increase in proline,
glycinebetaine (GB), total phenolics,
ascorbic acid and malondialdehyde (MDA)
contents as well as the activities of antioxidant enzymes including
superoxide dismutase, peroxidase and catalase were observed in the
spinach plants particularly at 40% FC. The most effective level of water
stress for elevating the proline, GB and
antioxidant levels/activities was observed at 40% FC followed
by 60% FC. Hence, the results of this study suggested that upregulation
of antioxidants and osmoprotectants is
positively associated with the drought tolerance of spinach which
depends on the severity of water stress level. These results can
be used to narrow the gap between selection of plant species and
requirement of irrigated water for the crops grown on dry land areas.
Keywords: Antioxidants; osmoprotection; reactive oxygen species; spinach; water stress
ABSTRAK
Adalah diketahui bahawa sayur-sayuran berdaun termasuk bayam (Spinacea oleracea L.)
mengandungi jumlah
air yang agak tinggi,
oleh itu, mereka
memerlukan lebih
air sepanjang kitaran hidup berbanding sayur-sayuran lain. Di samping itu, terdapat hubungan
antara osmoperlindungan
dan antioksidan berkaitan toleransi tekanan kemarau. Dengan mengambil kira fakta tersebut,
kajian ini dijalankan untuk menilai perubahan dalam pertumbuhan tanaman, osmoperlindungan, pigmen klorofil serta aktiviti/tahap sistem antioksidatif
pada bayam (Spinacea oleracea L.) yang ditanam di bawah rejim defisit air berbeza dengan 40%, 60%, 80% dan 100% kapasiti lapangan (FC). Pengenaan
rejim air yang berbeza
dengan ketara mengurangkan
berat segar
dan kering pucuk
dan akar, panjang pucuk dan
akar serta kandungan klorofil b pada pokok bayam. Pertambahan kandungan prolin, glisinbetain (GB), jumlah
fenolik, asid
askorbik dan malondialdehid
(MDA)
serta aktiviti
enzim antioksida termasuk superoksida dismutase,
peroksidase dan katalase telah diperhatikan pada tanaman bayam terutamanya
pada 40% FC. Tahap
tekanan air paling berkesan
untuk meningkatkan
tahap/aktiviti proline, GB dan
antioksidan diperhatikan
pada 40% FC diikuti
60% FC. Oleh itu,
keputusan kajian
ini mencadangkan pengawalaturan atas antioksidan dan osmoperlindungan dikaitkan secara positif dengan toleransi kemarau oleh bayam
yang bergantung pada
keterukan aras tekanan air. Keputusan ini boleh digunakan
untuk mengurangkan
jurang antara pemilihan
spesies tumbuhan
dan keperluan pengairan
untuk tanaman
yang ditanam di kawasan tanah kering.
Kata kunci: Antioksidan;
bayam; osmoperlindungan;
spesies oksigen reaktif; tekanan air
REFERENCES
Akram, N.A., Waseem, M., Ameen,
R. & Ashraf, M. 2016. Trehalose pretreatment
induces drought tolerance in radish (Raphanus
sativus L.) plants: Some key physio-biochemical
traits. Acta Physiologia
Plantrum 38: 3.
Aranjuelo, I., Molero, G., Erice, G., Avice, J.C. & Nogués, S. 2010. Plant physiology and proteomics reveals the
leaf response to drought in alfalfa (Medicago
sativa L.). Journal of Experimental Botany 62: 111-123.
Arnon, D.I. 1949. Copper enzymes in isolated chloroplast,
polyphenol oxidase in (Beta vulgaris L.). Journal of Plant
Physiology 24: 1-15.
Ashraf, M. 2010. Inducing drought tolerance in plants:
Some recent advances. Advances in Biotechnology 28: 169-183.
Ashraf, M. 2009. Biotechnological approach of improving
plant salt tolerance using antioxidants as markers. Biotechnology
Advances 27: 84-93.
Ashraf, M. & Harris, P.J.C. 2013. Photosynthesis
under stressful environments: An overview. Photosynthetica
51: 163-190.
Ashraf, M. & Foolad, M.R.
2007. Improving plant abiotic-stress resistance by exogenous application
of osmoprotectants glycine betaine and
proline. Environmental and Experimental Botany 59:
206-216.
Bates, L.S., Waldren, R.P.
& Teare, I.D. 1973. Rapid determination
of free proline for water stress. Plant Soil 39: 205-207.
Cakmak, I. & Horst, J.H. 1991. Effects of aluminum on lipid
peroxidation, superoxide dismutase, catalase, and peroxidase activities
in root tips of soybean (Glycine max). Physiologia
Plantarum 83: 463-468.
Chance, M. & Maehly, A.C.
1955. Assay of catalases and peroxidases. Methods in Enzymology
2: 764-817.
Cranston, L.M., Kenyon, P.R., Morris, S.T., Lopez-Villalobos,
N. & Kemp, P.D. 2016. Morphological and physiological responses
of plantain (Plantago lanceolata) and chicory (Cichorium
intybus) to water stress and defoliation
frequency. Journal of Agronomy and Crop Sciences 202: 13-24.
Darvishan, M., Tohidi-Moghadam, H.R.
& Zahedi, H. 2013. The effect of foliar application of ascorbic
acid (vitamin C) on physiological and biochemical changes of corn
(Zea mays L.) under irrigation withholding in
different growth stages. Maydica
58: 195-200.
De Gara, L., De Pinto, M.C.,
Moliterni, V.M. & D’egidio,
M.G. 2003. Redox regulation and storage processes during maturation
in kernels of Triticum durum.
Journal of Experimental Botany 54: 249-258.
Díaz-López, L., Gimeno, V., Simón, I., Martínez, V., Rodríguez-
Ortega, W.M. & García-Sánchez, F.
2012. Jatropha curcas seedlings
show a water conservation strategy under drought conditions based
on decreasing leaf growth and stomatal conductance. Agricultural
Water Management 105: 48-56.
Dolatabadian, A., Modarressanavy, S.A.M.
& Asilan, K.S. 2010. Effect of ascorbic
acid foliar application on yield, yield component and several morphological
traits of grain corn under water deficit stress conditions. Notulae
Scientia Biologicae
2: 45-50.
Du, S.T., Liu, Y., Zhang, P., Liu, H.J., Zhang, X.Q.
& Zhang, R.R. 2015. Atmospheric application of trace amounts
of nitric oxide enhances tolerance to salt stress and improves nutritional
quality in spinach (Spinacia
oleracea L.). Food Chemistry 173:
905-911.
Ejaz, B., Sajid, Z.A. & Aftab, F. 2012. Effect of exogenous application of ascorbic
acid on antioxidant enzyme activities, proline
contents, and growth parameters of Saccharum
spp., hybrid cv. HSF-240 under salt stress. Turkish Journal
of Biology 36: 630-640.
Ekinci, M., Ors, S., Sahin, U., Yildirim, E. & Dursun, A. 2015. Responses to the irrigation water amount
of spinach supplemented with organic amendment in greenhouse conditions.
Journal of Communications in Soil Sciences and Plant Analysis
46: 327-342.
Frary, A., Göl, D., Keles, D., Ökmen, B., Pinar, H.,
Sigva, H.Ö., Yemenicioglu, A. &
Doganlar, S. 2010. Salt tolerance in Solanum pennellii:
Antioxidant response and related QTL. BMC Plant Biology 10:
58.
Galahitigama, G.A.H. & Wathugala,
D.L. 2016. Pre-sowing seed treatments improves the growth and drought
tolerance of rice (Oryza sativa
L.). Imperial Journal of Interdisciplinary Research 2(9):
1074-1077.
Giannopolitis, C.N. & Ries,
S.K. 1977. Superoxide dismutases I. Occurrence
in higher plants. Plant Physiology 59: 309-314.
Grieve, C.M. & Grattan, S.R. 1983.
Rapid assay for determination of water soluble quaternary ammonium
compounds. Plant Soil 70: 303-307.
Hameed, A. & Iqbal, N. 2014. Chemo-priming
with mannose, mannitol and H2O2 mitigate drought stress in wheat.
Cereal Research Communications 42: 450-462.
Hammad, S.A.R. & Ali, O.A.M. 2014. Physiological
and biochemical studies on drought tolerance of wheat plants by
application of amino acids and yeast extract. Annals of Agricultural
Sciences 59: 133-145.
Julkunen-Tiitto, R. 1985. Phenolic constituents in
the leaves of north willows: Methods for the analysis of certain
phenolics. Journal of Agricultural and Food Chemistry 33:
213-217.
Khaki-Moghadam,
A. & Rokhzadi, A. 2015. Growth and
yield parameters of safflower (Carthamus
tinctorius) as influenced by foliar methanol application
under well-watered and water deficit conditions. Environmental and Experimental Biology
13: 93-97.
Kosar, F., Akram,
N.A. & Ashraf, M. 2015. Exogenously applied 5-aminolevulinic
acid modulates some key physiological characteristics and antioxidative
defense system in spring wheat (Triticum
aestivum L.) seedlings under water stress. South African
Journal of Botany 96: 71-77.
Kusaka, M., Ohta,
M. & Fujimura, T. 2005. Contribution of inorganic components
to osmotic adjustment and leaf folding for drought tolerance in
pearl millet. Physiologia Plantarum
125: 474-489.
Lamhamdi, M., Bakrim,
A., Bouayad, N., Aarab,
A. & Lafont, R. 2013. Protective role
of a methanolic extract of spinach (Spinacia
oleracea L.) against Pb
toxicity in wheat (Triticum
aestivum L.) seedlings: Beneficial effects for a plant
of a nutraceutical used with animals. Environmental Science and
Pollution Research 20: 7377-7385.
Lehtimäki, N., Lintala,
M., Allahverdiyeva, Y., Aro,
E.M. & Mulo, P. 2010. Drought stress-induced
upregulation of components involved in ferredoxin-dependent cyclic
electron transfer. Journal
of Plant Physiology 167: 1018-1022.
Leskovar, D.I., Agehara,
S., Yoo, K. & Pascual-Seva,
N. 2012. Crop coefficient-based deficit irrigation and planting
density for onion: Growth, yield, and bulb quality. Horticultural
Science 47: 31-37.
Ma, D., Sun, D., Wang, C., Li, Y.
& Guo, T. 2014. Expression of flavonoid
biosynthesis genes and accumulation of flavonoid in wheat leaves
in response to drought stress. Plant Physiology and Biochemistry
80: 60-66.
Maevskaya, S.N. & Nikolaeva,
M.K. 2013. Response of antioxidant and osmoprotective
systems of wheat seedlings to drought and rehydration. Russian Journal of Plant Physiology 60: 343-350.
Mittova, V., Volokita,
M., Guy, M. & Tal, M. 2000. Activities of SOD and the ascorbate-
lutathione cycle enzymes in subcellular compartments in leaves
and roots of the cultivated tomato and its wild salt-tolerant relative
Lycopersicon pennellii.
Physiologia Plantarum
110: 42-51.
Moussa, H.R. & Abdel-Aziz, S.M.
2008. Comparative response of drought tolerant and drought sensitive
maize genotypes to water stress. Australian Journal of Crop Science
1: 31-36.
Mukherjee, S.P. & Choudhuri, M.A. 1983. Implications of water stress induced
changes in the levels of endogenous ascorbic acid and hydrogen peroxide
in Vigna seedlings. Physiologia
Plantarum 58: 166-170.
Muscolo, A., Junker, A., Klukas, C., Weigelt-Fischer, K.,
Riewe, D. & Altmann, T. 2015.
Phenotypic and metabolic responses to drought and salinity of four
contrasting lentil accessions. Journal of Experimental Botany
66: 5467-5480.
Noreen, S., Ashraf, M., Hussain, M.
& Jamil, A. 2009. Exogenous application of salicylic acid enhances
antioxidative capacity in salt stressed sunflower (Helianthus
annuus L.) plants. Pakistan Journal of Botany 41: 473-479.
Nounjan, N., Nghia,
P.T. & Theerakulpisut, P. 2012. Exogenous
proline and trehalose promote recovery
of rice seedlings from salt-stress and differentially modulate antioxidant
enzymes and expression of related genes. Journal of Plant Physiology
169: 596-604.
Patel, P.K. & Aranjan, A.H. 2013. Differential sensitivity of chickpea genotype
to salicylic acid and drought stress during pre-anthesis:
Effects on total chlorophyll, phenolics,
seed protein, and protein profiling. An International Quarterly
Journal of Biology & Life Sciences 8: 569-574.
Raza, M.A.S., Saleem,
M.F., Khan, I.H., Shah, G.M. & Raza, A. 2016. Bio-economics
of foliar applied GB and k on drought stressed wheat (Triticum
aestivum L.). ARPN Journal of Agricultural
and Biological Sciences 11: 1.
Raza, M.A.S., Saleem,
M.F., Shah, G.M., Khan, I.H. & Raza, A. 2014. Exogenous application
of glycinebetaine and potassium for improving water relations
and grain yield of wheat under drought. Journal of Soil Sciences
and Plant Nutrition 14: 348-364.
Razzaq, A., Ali, Q., Qayyum,
A., Mahmood, I., Ahmad, M. & Rasheed, M. 2013. Physiological
responses and drought resistance and drought resistance index of
nine wheat (Triticum
aestivum L.) cultivars under different
moisture conditions. Pakistan Journal of Botany 45: 151-155.
Shafiq, S., Akram,
N.A. & Ashraf, M. 2015. Does exogenously-applied trehalose
alter oxidative defense system in the edible part of radish (Raphanus sativus L.)
under water-deficit conditions? Scientia
Horticulturae 185: 68-75.
Shafiq, S., Akram,
N.A., Ashraf, M. & Arshad, A. 2014. Synergistic effects of drought
and ascorbic acid on growth, mineral nutrients and oxidative defense
system in canola (Brassica napus L.)
plants. Acta Physiologia Plantarum 36: 539-1553.
Simon-Grao,
S., Garcia-Sanchez, F., Alfosea-Simon,
M., Simon, I., Lidon, V. & Ortega,
W.M.R. 2016. Study on the foliar application of fitomare®
on drought tolerance of tomato plants. International Journal
of Plant Animal & Environmental Sciences 6: 15-21.
Srivastava, N. & Kumar, G. 2014.
Influence of drought stress on cytological behavior of green manure
crop Sesbania cannabina Poir. Cytologia 79:
325-329.
Terzi, R. & Kadioglu,
A. 2006. Drought stress tolerance and antioxidant enzyme system
in Ctenanthe setosa.
Acta Biologica Cracoviensia Series Botanica 48:
89-96.
Velikova, V., Yordanov, I. & Edreva, A. 2000. Oxidative stress and some antioxidant systems
in acid rain-treated bean plants: Protective roles of exogenous
polyamines. Plant Sciences 151: 59-66.
Xu, C. & Leskovar,
D.I. 2015. Effects of A. nodosum seaweed
extracts on spinach growth, physiology and nutrition value under
drought stress. Scientia Horticultuae
183: 39-47.
Yadegari, L.Z., Heidari,
R., Rahmani, F. & Khara,
J. 2014. Drought tolerance induced by foliar application of abscisic
acid and sulfonamide compounds in tomato. Journal of Stress Physiology
and Biochemistry 10: 326-334.
Yasmeen, A., Basra, S.M.A., Wahid,
A., Farooq, M., Nouman, W., Rehman,
H.U. & Hussain, N. 2013. Improving drought resistance in wheat
(Triticum aestivum)
by exogenous application of growth enhancers. International Journal
of Agriculture & Biology 15: 1307-1312.
*Corresponding author;
email: nudrataauaf@yahoo.com
|