Sains Malaysiana 48(3)(2019):
561–570
http://dx.doi.org/10.17576/jsm-2019-4803-08
The Effects of Plant Secondary Metabolites
from Coniferous Needle Leaf Litter on the Leaf Litter Decomposition
of Betula albo-sinensis Burk
(Kesan Metabolit Tumbuhan Sekunder daripada Sampah Daun bak
Jarum Konifer
pada Penguraian Sampah Dedaun Betula
albo-sinensis Burk)
XIAOXI ZHANG1,2,
HUI
LIU1,
WENXING
ZHOU1,
JIAJIA
LI1,
HANGYU
LEI1,
YONGKANG
JI1,
BOYA
WANG3
& ZENGWEN LIU3*
1Shaanxi Engineering
and Technological Research Center for Conservation and Utilization
of Regional, Biological Resources, College of Life Sciences, Yan’an University, Yan’an, Shaanxi,
716000, China
2Institute of Soil
and Water Conservation, Northwest A&F University, Yangling,
Shaanxi, 712100, China
3College of Natural
Resources and Environment, Northwest A&F University, Yangling,
Shaanxi, 712100, China
Received: 28 July 2018/Accepted: 4
January 2019
ABSTRACT
In this study, leaf litters of
Betula albo-sinensis
and 5 coniferous species were used as samples. The B. albo-sinensis
leaf litter was buried in soil and termly treated with the water
extracts of five types of coniferous leaf litter for a 6-month simulation
decomposition experiment. The dynamics of mass loss and nutrients
(C, N, P, and K) content of leaf litter and the soil enzymatic activities
were measured to investigate the effects of plant secondary metabolites
(PSM) from coniferous leaf litters
on the decomposition processes of B. albo-sinensis
leaf litter. The results indicated that the extracts of Pinus tabuliformis, Platycladus orientalis, P. armandii and Larix principis-rupprechtii leaf litters significantly inhibited
the whole decomposition process and overall nutrients release of
B. albo-sinensis leaf litter, while
the extracts of Picea asperata leaf litter exhibited
no significant influence. The general suppression of PSM on
the soil sucrase, carboxymethyl
cellulase and β-glucosidase activities
might be the main reason leading to the inhibitory effects of the
extracts of P. tabuliformis, P. orientalis, P.
armandii and L. principis-rupprechtii
leaf litter. The species causing inhibitory effects, especially
L. principis-rupprechtii, was not recommended to be planted
mixed with B. albo-sinensis, or
their planting density should be lower in the mixed forests.
Keywords: Leaf litter decomposition;
nutrient release; secondary metabolites; soil enzymatic activities
ABSTRAK
Dalam kajian ini, sampah
dedaun bagi
Betula albo-sinensis
dan lima spesies konifer telah digunakan
sebagai sampel.
Sampah dedaun B. albo-sinensis telah ditanam di dalam tanah dan dirawat
dengan ekstrak
air daripada lima jenis sampah dedaun konifer
untuk uji kaji penguraian simulasi selama 6 bulan. Dinamik kehilangan jisim dan kandungan nutrien
(C, N, P dan K) sampah
dedaun dan aktiviti
enzim tanah
diukur untuk mengkaji
kesan metabolit
sekunder tumbuhan (PSM)
daripada sampah
dedaun konifer dalam proses penguraian sampah dedaun B. albo-sinensis. Hasilnya menunjukkan bahawa ekstrak sampah dedaun Pinus tabuliformis, Platycladus orientalis, P. armandii dan Larix principis-rupprechtii menghalang
proses penguraian keseluruhan
dan penyebaran
nutrien keseluruhan B. albo-sinensis secara signifikan, manakala ekstrak sampah dedaun Picea asperata tidak menunjukkan kesan yang signifikan. Penekanan umum PSM ke atas aktiviti sukrase,
karboksimetil selulase
dan aktiviti β-glucosidase
tanah mungkin menjadi
sebab utama
yang membawa kepada kesan perencatan ekstrak sampah dedaun P. tabuliformis, P. orientalis, P. armandii dan L. principis-rupprechtii.
Spesies yang menyebabkan
kesan perencatan,
terutamanya L. principis-rupprechtii
adalah tidak
disarankan untuk ditanam bercampur dengan B. albo-sinensis atau ketumpatan penanamannya harus lebih rendah di dalam hutan bercampur.
Kata kunci: Aktiviti
enzimatik tanah;
metabolit sekunder; pelepasan nutrien; penguraian sampah dedaun
REFERENCES
Adamczyk, B., Karonen,
M., Adamczyk, S., Engström,
M.T., Laakso, T., Saranpää,
P., Kitunen, V., Smolander,
A. & Simon, J. 2017. Tannins can slow-down but also speed-up
soil enzymatic activity in boreal forest. Soil Biology and Biochemistry
89: 60-67.
Adamczyk, S., Adamczyk,
B., Kitunen, V. & Smolander,
A. 2015. Monoterpenes and higher terpenes may inhibit enzyme activities
in boreal forest soil. Soil Biology and Biochemistry 87:
59-66.
Adamczyk, S., Kiikkilä,
O., Kitunen, V. & Smolander,
A. 2013. Potential response of soil processes to diterpenes,
triterpenes and tannins: Nitrification, growth of microorganisms
and precipitation of proteins. Applied Soil Ecology 67: 47-52.
Aderiye, B.I., Ogundana,
S.K., Adesanya, S.A. & Roberts, M.F.
1989. The effect of β-sitosterol
on spore germination and germ-tube elongation of Aspergillus
niger and Botryodiplodia theobromae.
International Journal of Food Microbiology 8(1): 73-78.
Asensio, D., Yuste, J.C.,
Mattana, S., Ribas,
À., Llusià, J. & Peñuelas,
J. 2012. Leaf litter VOCs induce changes in soil microbial biomass
C and N and largely increase soil CO2 efflux. Plant and Soil 360(1-2):
163-174.
Cañas, A.I., Alcalde, M., Plou, F., Martínez, M.J., Martínez, Á.T. &
Camarero, S. 2007. Transformation of polycyclic
aromatic hydrocarbons by laccase is strongly enhanced by phenolic
compounds present in soil. Environmental Science & Technology
41(8): 2964-2971.
Chapman, S.K., Newman, G.S., Hart, S.C., Schweitzer, J.A. &
Koch, G.W. 2013. Leaf litter mixtures alter microbial community
development: Mechanisms for non-additive effects in leaf litter
decomposition. PloS ONE 8(4): e62671.
Chen, W., Vermaak, I. & Viljoen, A. 2013.
Camphor-a fumigant during the black death and a coveted fragrant
wood in ancient Egypt and Babylon-a review. Molecules (Basel,
Switzerland) 18(5): 5434-5454.
Chomel, M., Guittonny-Larchevêque, M., Fernandez, C., Gallet, C., DesRochers, A., Paré, D., Jackson, B.G. & Baldy, V. 2016. Plant secondary
metabolites: A key driver of litter decomposition and soil nutrient
cycling. Journal of Ecology 104(6): 1527-1541.
Coq, S., Souquet, J.M., Meudec, E., Cheynier, V. & Hättenschwiler,
S. 2010. Interspecific variation in litter tannins drives decomposition
in a tropical rain forest of French Guiana. Ecology 91(7):
2080-2091.
Cox, S., Mann, C.,
Markham, J., Bell, H., Gustafson, J., Warmington,
J. & Wyllie, S. 2000. The mode of antimicrobial action of the
essential oil of Melaleuca alternifolia
(tea tree oil). Journal of Applied Microbiology 88(1):
170-175.
De Marco, A., Meola, A., Maisto, G., Giordano,
M. & De Santo, A.V. 2011. Non-additive effects of leaf litter
mixtures on decomposition of leaf litters in a Mediterranean maquis.
Plant and Soil 344(1-2): 305-317.
Duan, J., Wang, S., Zhang,
Z., Xu, G., Luo, C., Chang, X., Zhu, X., Cui, S., Zhao, X. &
Wang, W. 2013. Non-additive effect of species diversity and temperature
sensitivity of mixed litter decomposition in the alpine meadow on
Tibetan Plateau. Soil Biology and Biochemistry 57: 841-847.
Enguita, F.J. & Leitão, A.L. 2013. Hydroquinone: Environmental pollution,
toxicity, and microbial answers. BioMed
Research International 2013: e542168.
Gartner, T.B. &
Cardon, Z.G. 2004. Decomposition dynamics
in mixed-species leaf litter. Oikos
104(2): 230-246.
Ghasemi-Aghbash, F., Hosseini, V.
& Poureza, M. 2015. Nutrient dynamics
and early decomposition rates of Picea
abies needles in combination with Fagus orientalis leaf litter in an exogenous ecosystem. Annals
of Forest Research 59(1): 21-32.
Hättenschwiler, S. & Jørgensen, H.B. 2010. Carbon quality rather than stoichiometry
controls litter decomposition in a tropical rain forest. Journal
of Ecology 98(4): 754-763.
Hättenschwiler, S., Tiunov, A.V. & Scheu, S. 2005. Biodiversity and litter
decomposition in terrestrial ecosystems. Annual Review of Ecology,
Evolution, and Systematics 36: 191-218.
Iqbal, J., Siegrist, J.A., Nelson, J.A. & McCulley,
R.L. 2012. Fungal endophyte infection increases carbon sequestration
potential of southeastern USA tall fescue stands. Soil Biology
and Biochemistry 44(1): 81-92.
Joanisse, G., Bradley, R.,
Preston, C. & Munson, A. 2007. Soil enzyme inhibition by condensed
litter tannins may drive ecosystem structure and processes: The
case of Kalmia angustifolia. New Phytologist
175(3): 535-546.
Li, Q. & Liu,
Z. 2013. Effects of decomposed leaf litter mixtures from Platycladus
orientalis and broadleaf tree species
on soil properties. Scandinavian Journal of Forest Research 28(7):
642-650.
Li, Q., Liu, P.,
Tang, Z., Zhao, H., Wang, J., Song, X., Yang, L. & Wan, S. 2016a.
Effects of two phenolic acids on root zone soil nutrients, soil
enzyme activities and pod yield of peanut. Chinese Journal of
Applied Ecology 27(4): 1189-1195.
Li, Q., Zhao, G.,
Cao, G. & Liu, Z. 2016b. Soil effects of six different two-species
litter mixtures that include Ulmus
pumila. Chemistry and Ecology 32(8): 707-721.
Li, Y., Ying, Y.X.,
Zhao, D.Y. & Ding, W.L. 2014. Influence of allelochemicals
on microbial community in ginseng cultivating soil. Chinese Herbal
Medicines 6(4): 313-318.
Liu, P., Huang, J.,
Sun, O.J. & Han, X. 2010. Litter decomposition and nutrient
release as affected by soil nitrogen availability and litter quality
in a semiarid grassland ecosystem. Oecologia
162(3): 771-780.
Liu, P., Liu, Z.,
Wang, C., Guo, F., Wang, M., Zhang, Y.,
Dong, L. & Wan, S. 2012. Effects of three long-chain fatty acids
present in peanut (Arachis hypogaea L.)
root exudates on its own growth and the soil enzymes activities.
Allelopathy Journal 29(1): 13-24.
Madritch, M., Donaldson,
J.R. & Lindroth, R.L. 2006. Genetic
identity of Populus tremuloides litter
influences decomposition and nutrient release in a mixed forest
stand. Ecosystems 9(4): 528-537.
Mao, B., Yu, Z.Y.
& Zeng, D.H. 2015. Non-additive effects of species mixing on
litter mass loss and chemical properties in a Mongolian pine plantation
of Northeast China. Plant and Soil 396(1-2): 339-351.
Mierziak, J., Kostyn, K. & Kulma, A. 2014.
Flavonoids as important molecules of plant interactions with the
environment. Molecules (Basel, Switzerland) 19(10): 16240-
16265.
Naseby, D., Pascual, J. & Lynch, J. 2000. Effect of biocontrol strains
of Trichoderma on plant
growth, Pythium ultimum populations,
soil microbial communities and soil enzyme activities. Journal
of Applied Microbiology 88(1): 161-169.
Ormeno, E., Baldy, V.,
Ballini, C., Larchevêque, M., Périssol, C. & Fernandez, C. 2006. Effects of environmental
factors and leaf chemistry on leaf litter colonization by fungi
in a Mediterranean shrubland. Pedobiologia
50(1): 1-10.
Osono, T. 2007. Ecology
of ligninolytic fungi associated with
leaf litter decomposition. Ecological Research 22(6): 955-974.
Purahong, W., Kapturska, D., Pecyna, M.J., Schulz,
E., Schloter, M., Buscot,
F., Hofrichter, M. & Krüger,
D. 2014. Influence of different forest system management practices
on leaf litter decomposition rates, nutrient dynamics and the activity
of ligninolytic enzymes: A case study from Central European forests.
PloS ONE 9(4): e93700.
Roy, R., Laskar, S. & Sen, S. 2006. Dibutyl
phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiological Research 161(2):
121-126.
Schimel, J.P. &
Hättenschwiler, S. 2007. Nitrogen transfer
between decomposing leaves of different N status. Soil Biology
and Biochemistry 39(7): 1428-1436.
Schweitzer, J.A.,
Bailey, J.K., Rehill, B.J., Martinsen,
G.D., Hart, S.C., Lindroth, R.L., Keim,
P. & Whitham, T.G. 2004. Genetically
based trait in a dominant tree affects ecosystem processes. Ecology
Letters 7(2): 127-134.
Shi, B., Luan, D.,
Wang, S., Zhao, L., Tao, L., Yuan, Q. & Wang, X. 2015. Borneol-grafted
cellulose for antifungal adhesion and fungal growth inhibition.
RSC Advances 5: 51947-51952.
Triebwasser, D.J., Tharayil, N., Preston, C.M. & Gerard, P.D. 2012. The susceptibility
of soil enzymes to inhibition by leaf litter tannins is dependent
on the tannin chemistry, enzyme class and vegetation history. New
Phytologist 196(4): 1122- 1132.
Ushio, M., Balser,
T.C. & Kitayama, K. 2013. Effects
of condensed tannins in conifer leaves on the composition and activity
of the soil microbial community in a tropical montane forest. Plant
and Soil 365(1-2): 157-170.
Uusitalo,
M., Kitunen, V. & Smolander,
A. 2008. Response of C and N transformations in birch soil to coniferous
resin volatiles. Soil Biology and Biochemistry 40(10): 2643-2649.
Wang, J., Wang, D.,
Yu, F., Shen, W., Zou, C., Zhang, R. & Hou,
P. 2014. Enzyme activity in rhizosphere soil of Cryptomeria
fortunei seedlings with simulated
acid rain and litter. Journal of Zhejiang Forestry College 31(3):
373-379.
Wang, Z., Zhao, X.,
Xu, W., Su, Y., You, Y., Liu, S., Hu, Y., Yang, Y. & Zhang,
Y. 2015. Response of microbial biomass and enzyme activities in
black soil to din-butyl phthalate contamination. Asian Journal
of Ecotoxicology 10(6): 199- 205.
Zhang, F., Guo, A., Li, Q., Li, H., Hu, M. & Wang, F. 2013. The allelopathic effects of five volatiles released from Eupatorium
adenophora on Trichoderma
harzianum and Botrytis cinerea.
Acta Phytophylacica
Sinica 40(2): 191-192.
Zhang, X., Liu, Z.,
Tian, N., Luc, N.T., Zhu, B. & Bing, Y. 2015. Allelopathic
effects of decomposed leaf litter from intercropped trees on rape.
Turkish Journal of Agriculture and Forestry 39(6): 898-908.
Zhang, X., Liu, Z.
& Hu, W. 2016. Response of nutrient release of Periploca
sepium litter to soil petroleum contamination.
CLEAN-Soil, Air, Water 44(12): 1709-1716.
Zheng, Y. 2008. Antibitic functions and volatile organic compounds from Pinus tabulaeformis Var.
Mukdensis Uyeki
and Betula Platyphlla
Suk. Northeast Forestry University.
Zhou, B., Han, L.,
Yin, Y., Wu, J., Sun, C., Ye, X. & Bai, L. 2010. Effects of
allelochemicals hexadecanoic acid
on soil microbial composition and biomass in rhizosphere of eggplant.
Journal of Shenyang Agricultural University 41(3): 275-278.
Zhou, B., Kong, C.H.,
Li, Y.H., Wang, P. & Xu, X.H. 2013. Crabgrass (Digitaria
sanguinalis) allelochemicals
that interfere with crop growth and the soil microbial community.
Journal of Agricultural and Food Chemistry 61(22): 5310-
5317.
*Corresponding author; email: zengwenliu2003@aliyun.com
|