Sains Malaysiana 48(3)(2019): 653–659

http://dx.doi.org/10.17576/jsm-2019-4803-19

 

Effect of Alkaline Treatment on Structural Characterisation, Thermal Degradation and Water Absorption Ability of Coir Fibre Polymer Composites

(Kesan Rawatan Alkali terhadap Pencirian Struktur, Degradasi Terma dan Keupayaan Serapan Air bagi Komposit Polimer Serabut Sabut Kelapa)

 

BEEN SEOK YEW1*, MARTINI MUHAMAD1, SAIFUL BAHRI MOHAMED1 & FWEN HOON WEE2

 

1Faculty of Innovative Design & Technology, Universiti Sultan Zainal Abidin, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

2School of Computer and Communication, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

Received: 4 September 2018/Accepted: 3 January 2019

 

ABSTRACT

The alkaline treatment with 5 wt. % sodium hydroxide (NaOH) solution at room temperature for 24 and 48 h was performed on coir fibre. The structural characterisation, thermal degradation and water absorption ability of the untreated and NaOH-treated coir fibre polymer composites have been studied. Scanning electron microscope (SEM) images showed that coir fibres treated with NaOH have rough surface texture and the roughness of the fibre surface becomes significant as the duration of the NaOH treatment increased. Fourier transform infrared (FTIR) spectra confirmed that NaOH treatment removed hemicelluloses as evidenced by the absence of absorption bands at 1724.36 cm-1 and changes the absorption intensity at bands 1244.09 cm-1and 1249.87 cm-1 due to the loss of lignin. NaOH-treated coir fibre composites demonstrated better thermal stability at low temperature degradation. At high temperature, the thermal stability was reduced due to the decreased of residual lignin content. The water absorption of the NaOH-treated coir fibre composites was lower than untreated coir composite contributed by better interfacial adhesion between the NaOH-treated coir fibre to epoxy resin.

 

Keywords: Coir fibre; NaOH; polymer

 

ABSTRAK

Rawatan alkali dengan kepekatan 5 % bt. larutan natrium hidroksida (NaOH) pada suhu bilik selama 24 dan 48 jam telah dibuat terhadap sabut kelapa. Pencirian struktur, degradasi termal dan keupayaan serapan air terhadap komposit polimer sabut kelapa tidak dirawat dan sabut kelapa dirawat-NaOH telah dikaji. Imej daripada mikroskop elektron imbasan (SEM) menunjukkan sabut kelapa dirawat-NaOH mempunyai permukaan yang kesat dan kekesatan permukaan sabut kelapa menjadi ketara dengan penambahan tempoh rawatan alkali. Spektra transformasi Fourier inframerah (FTIR) mengesahkan bahawa rawatan NaOH menyingkirkan kandungan hemiselulosa yang dibuktikan oleh ketiadaan jalur 1724.36 cm-1 serta mengubah keamatan jalur 1244.09 dan 1249.87 cm-1 yang disebabkan oleh kehilangan lignin. Komposit polimer sabut kelapa dirawat-NaOH menunjukkan kestabilan termal pada degradasi suhu rendah. Pada degradasi suhu yang tinggi, kestabilan termal berkurang disebabkan oleh penurunan kandungan sisa lignin. Serapan air oleh komposit polimer sabut kelapa dirawat-NaOH adalah lebih rendah daripada komposit polimer sabut kelapa tidak dirawat disebabkan oleh lekatan yang lebih baik antara sabut kelapa terawat dan matriks polimer.

 

Kata kunci: NaOH; polimer; serabut sabut kelapa

REFERENCES

Abraham, E., Deepa, B., Pothen, L.A., Cintil, J., Thomas, S., John, M.J., Anandjiwala, R. & Narine, S.S. 2013. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers 92(2): 1477-1483.

Akhtar, M.N., Sulong, A.B., Radzi, M.K.F., Ismail, N.F., Raza, M.R., Muhamad, N. & Khan, M.A. 2016. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International 26(6): 657-664.

Al-Oqla, F.M., Sapuan, S.M., Anwer, T., Jawaid, M. & Hoque, M.E. 2015. Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals 20: 42-54.

Amiri, A., Ulven, C.A. & Huo, S. 2015. Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition. Polymers 7(10): 1965-1978.

Azwa, Z.N., Yousif, B.F., Manalo, A.C. & Karunasena, W. 2013. A review on the degradability of polymeric composites based on natural fibres. Materials and Design 47: 424-442.

Beg, M.D.H. & Pickering, K.L. 2008. Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites. Polymer Degradation and Stability 93(10): 1939-1946.

Brígida, A.I.S., Calado, V.M.A., Gonçalves, L.R.B. & Coelho, M.A.Z. 2010. Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers 79(4): 832-838.

Costa, M.L., Rezende, M.C. & de Almeida, S.F.M. 2006. Effect of void content on the moisture absorption in polymeric composites. Polymer-Plastics Technology and Engineering 45(6): 691-698.

Fiore, V., Di Bella, G. & Valenza, A. 2015. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering 68(2014): 14-21.

Gomes, A., Matsuo, T., Goda, K. & Ohgi, J. 2007. Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites Part A: Applied Science and Manufacturing 38(8): 1811-1820.

Haque, M.M., Ali, M.E., Hasan, M., Islam, M.N. & Kim, H. 2012. Chemical treatment of coir fiber reinforced polypropylene composites. Industrial & Engineering Chemistry Research 51(10): 3958-3965.

Ikhuoria, E.U., Omorogbe, S.O., Agbonlahor, O.G., Iyare, N.O., Pillai, S. & Aigbodion, A.I. 2017. Spectral analysis of the chemical structure of carboxymethylated cellulose produced by green synthesis from coir fibre. Ciencia e Tecnologia Dos Materiais 29(2): 55-62.

Kabir, M.M., Wang, H., Lau, K.T. & Cardona, F. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43(7): 2883-2892.

Lee, K.Y., Aitomäki, Y., Berglund, L.A., Oksman, K. & Bismarck, A. 2014. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology 105: 15-27.

Li, X., Tabil, L.G. & Panigrahi, S. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15(1): 25-33.

Liu, Y., Sun, B., Zheng, X., Yu, L. & Li, J. 2018. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology 247(2017): 859-863.

Nascimento, L.F.C., Monteiro, S.N., Louro, L.H.L., Luz, F.S.D., Santos, H.L.D., Braga, F.D. O. & Marçal, R.L.S. 2018. Charpy impact test of epoxy composites reinforced with untreated and mercerized mallow fibers. Journal of Materials Research and Technology 7(4): 520-527.

Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C. & Bergado, D.T. 2010. Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydrate Polymers 82(4): 1090-1096.

Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O. & El Bouari, A. 2017. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF-polyurethane composite. South African Journal of Chemical Engineering 23: 116-123.

Pickering, K.L., Efendy, M.G.A. & Le, T.M. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83: 98-112.

Punyamurthy, R., Sampathkumar, D., Ranganagowda, R.P.G., Bennehalli, B. & Srinivasa, C.V. 2017. Mechanical properties of abaca fiber reinforced polypropylene composites: Effect of chemical treatment by benzenediazonium chloride. Journal of King Saud University-Engineering Sciences 29(3): 289-294.

Qian, S., Wang, H., Zarei, E. & Sheng, K. 2015. Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Composites Part B: Engineering 82: 23-29.

Raghavendra, G., Shakuntala, O., Acharya, S.K. & Pal, S.K. 2014. Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. Journal of Composite Materials 48(20): 2537-2547.

Sair, S., Oushabi, A., Kammouni, A., Tanane, O., Abboud, Y. & El Bouari, A. 2018. Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Studies in Construction Materials 8: 203-212.

Sinha, E. & Rout, S.K. 2009. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite. Bulletin of Materials Science 32(1): 65-76.

Summerscales, J., Virk, A. & Hall, W. 2010. A review of bast fibres and their composites: Part 1-Fibres as reinforcements. Composites Part A 41(10): 1329-13335.

Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R. & Herrera-Franco, P.J. 1999. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering 30(3): 309-320.

Zaman, H.U. & Beg, M. 2014. Preparation, structure, and properties of the coir fiber/polypropylene composites. Journal of Composite Materials 48(26): 3293-3301.

Zhang, K., Wang, F., Liang, W., Wang, Z., Duan, Z. & Yang, B. 2018. Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers 8(6): 1-18.

Zhang, L., Sun, Z., Liang, D., Lin, J. & Xiao, W. 2017. Preparation and performance evaluation of PLA/coir fibre biocomposites. BioResources 12(4): 7349-7362.

 

*Corresponding author; email: bseokyew@gmail.com

 

 

 

 

 

previous