Sains Malaysiana 48(3)(2019):
669–676
http://dx.doi.org/10.17576/jsm-2019-4803-21
Influence the Filler Orientation on
the Performance of Bipolar Plate
(Pengaruh Orientasi Pengisi ke atas Prestasi
Plat Dwikutub)
NABILAH AFIQAH
MOHD
RADZUAN1,
ABU
BAKAR
SULONG1,2*
& MAHENDRA RAO SOMALU1
1Fuel Cell Institute,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Centre for Materials
Engineering and Smart Manufacturing, Mechanical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received:
13 September 2018/Accepted: 23 December 2018
ABSTRACT
Bipolar plates significantly
contribute to the development of the polymer electrolyte membrane
(PEM)
fuel cells technology due to their ability to produce high electrical
conductivity based on the type of materials used. Mismatching of
inappropriate materials and manufacture may lead to the inferior
performance of PEM
fuel cells. Hence, material development was determined
crucial to balance the overall performance of PEM fuels including the mechanical properties
and electrical conductivity of the materials. Studies on conductive
polymer composites (CPCs) offered filler with orientation
in terms of filler with aspect ratio and shape as an alternative
method to enhance the overall performance of the bipolar plate.
Filler orientations permit an excellent conductivity network formation
while controlling the filler alignment based on required applications.
This paper reviewed various studies of filler orientations including
materials used and methods of manufacture of CPC
materials for the effective development of bipolar
plate. The technique to orientate the filler was highlight in terms
of materials processing and its effects on the materials performance.
Keywords: Conductive polymer
composite; electrical conductivity; orientation
ABSTRAK
Plat dwikutub
menyumbang kepada
pembangunan teknologi sel fuel polimer elektrolit membran (PEM)
memandangkan keupayaannya
dalam menghasilkan nilai keberaliran elektrik yang tinggi bersandarkan jenis bahan yang digunakan. Ketidaksepadanan bahan dan proses pembuatan merendahkan prestasi PEM.
Oleh itu, penentuan pembangunan bahan amat kritikal
dalam memastikan
keseimbangan prestasi keseluruhan SFPEM termasuklah
sifat mekanik
dan nilai keberaliran
elektrik bahan.
Kajian terhadap bahan komposit polimer pengalir menawarkan orientasi pengisi seperti pengisi bernisbah bidang dan berbentuk
sebagai kaedah
alternatif dalam meningkatkan prestasi keseluruhan plat dwikutub. Orientasi pengisi membolehkan pembentukan jaringan keberaliran elektrik yang baik dengan mengawal arah penjajaran berdasarkan jenis aplikasi yang ditetapkan. Kertas ini menekankan
kepelbagaian kajian
orientasi pengisi termasuk bahan serta kaedah pembuatan
bahan komposit
polimer pengalir dalam pembangunan plat dwikutub yang lebih berkesan. Kaedah bagi mengorientasikan pengisi turut ditekankan
daripada segi
pemilihan bahan dan kesannya terhadap
prestasi bahan.
Kata kunci: Keberaliran
elektrik; komposit
polimer pengalir; orientasi
REFERENCES
Agboola, B.O., Jack, D.A. & Montgomery-Smith,
S. 2012. Effectiveness of recent fiber-interaction diffusion models
for orientation and the part stiffness predictions in injection
molded short-fiber reinforced composites. Composites Part A:
Applied Science and Manufacturing 43(11): 1959-1970.
Alomayri, T., Shaikh, F.U.A. & Low, I.M. 2014.
Effect of fabric orientation on mechanical properties of cotton
fabric reinforced geopolymer composites.
Materials & Design 57: 360-365.
Antunes, R.A., de Oliveira, M.C.L., Ett, G. & Ett, V. 2011. Carbon
materials in composite bipolar plates for polymer electrolyte membrane
fuel cells: A review of the main challenges to improve electrical
performance. Journal of Power Sources 196(6): 2945-2961.
Ausias, G., Jarrin, J.
& Vincent, M. 1996. Optimization of the tube-extrusion die for
short-fiber-filled polymers. Composites Science and Technology
56(7): 719-724.
Balogun, Y.A. & Buchanan, R.C. 2010. Enhanced
percolative properties from partial solubility
dispersion of filler phase in conducting polymer composites (CPCs).
Composites Science and Technology 70(6): 892-900.
Barton, R.L., Keith, J.M. & King, J.A.
2008. Electrical conductivity modeling of multiple carbon fillers
in liquid crystal polymer composites for fuel cell bipolar plate
applications. J. New Mater. Electrochem.
Syst. 11(3): 181.
Barton, R.L., Keith, J.M.
& King, J.A. 2007. Development and modeling of electrically
conductive carbon filled liquid crystal polymer composites for fuel
cell bipolar plate applications. Journal of New Materials for
Electrochemical Systems 10(4): 225.
Chua, M.I.H., Sulong, A.B., Abdullah,
M.F. & Muhamad, N. 2013. Optimization of injection molding and
solvent debinding parameters of stainless
steel powder (SS316L) based feedstock for metal injection molding.
Sains Malaysiana 42(12):
1743-1750.
Clingerman, M.L., King, J.A., Schulz, K.H. & Meyers, J.D. 2002.
Evaluation of electrical conductivity models for conductive polymer
composites. Journal of Applied Polymer Science 83(6): 1341-1356.
Du, C., Ming, P., Hou, M.,
Fu, J., Fu, Y., Luo, X., Shen, Q., Shao, Z. & Yi, B. 2010. The
preparation technique optimization of epoxy/compressed expanded
graphite composite bipolar plates for proton exchange membrane fuel
cells. Journal of Power Sources 195(16): 5312-5319.
Dweiri, R. & Sahari, J. 2008.
Microstructural image analysis and structure-electrical conductivity
relationship of single-and multiple-filler conductive composites.
Composites Science and Technology 68(7-8): 1679-1687.
Dweiri, R. & Sahari, J. 2007.
Computer simulation of electrical conductivity of graphite-based
polypropylene composites based on digital image analysis. Journal
of Materials Science 42(24): 10098-10102.
Eberhardt, C., Clarke, A., Vincent, M., Giround, T. & Flouret, S. 2001.
Fibre-orientation measurements in
short-glass-fibre composites - II: A quantitative error estimate
of the 2D image analysis technique. Composites
Science and Technology 61: 1961-1974.
Fan, Z. & Advani, S.G.
2005. Characterization of orientation state of carbon nanotubes
in shear flow. Polymer 46(14): 5232-5240.
Feller, J.F., Chauvelon, P.,
Linossier, I. & Glouannec,
P. 2003. Characterization of electrical and thermal properties of
extruded tapes of thermoplastic conductive polymer composites (CPC).
Polymer Testing 22(7): 831-837.
Feller, J.F., Linossier, I.
& Grohens, Y. 2002. Conductive polymer
composites: Comparative study of poly(ester)- short carbon fibres
and poly(epoxy)-short carbon fibres mechanical
and electrical properties. Materials Letters 57(1): 64-71.
Fu, S.Y. & Lauke, B. 1996. Effects of fiber length and fiber
orientation distributions on the tensile strength of short-fiber-reinforced
polymers. Composites Science
and Technology 56: 1179-1190.
González-Espasandín, Ó., Leo,
T.J., Raso, M.A. & Navarro, E. 2019.
Direct methanol fuel cell (DMFC) and H2 proton exchange membrane
fuel (PEMFC/H2) cell performance under atmospheric flight conditions
of unmanned aerial vehicles. Renewable Energy 130: 762-773.
Hine, P.J., Davidson, N., Duckett,
R.A. & Ward, I.M. 1995. Measuring the fibre
orientation and modelling the elastic properties of injection-moulded long-glass-fibre-reinforced
nylon. Composites Science and Technology 53(2): 125-131.
Hobbie, E.K., Wang, H., Kim, H., Lin-Gibson,
S. & Grulke, E.A. 2003. Orientation
of carbon nanotubes in a sheared polymer melt. Physical Fluids 15: 1196-1202.
Huang, J. & Rodrigue, D.
2014. The effect of carbon nanotube orientation and content on the
mechanical properties of polypropylene based composites. Materials
& Design 55: 653-663.
Hwang, I.U., Yu, H.N., Kim, S.S., Lee, D.G., Suh, J.D.,
Lee, S.H., Ahn, B.K., Kim, S.H. &
Lim, T.W. 2008. Bipolar plate made of carbon fiber epoxy composite
for polymer electrolyte membrane fuel cells. Journal of Power
Sources 184(1): 90-94.
Kakati, B.K., Sathiyamoorthy, D.
& Verma, A. 2011. Semi-empirical modeling
of electrical conductivity for composite bipolar plate with multiple
reinforcements. International Journal of Hydrogen Energy 36(22):
14851-14857.
Kakati, B.K., Yamsani, V.K., Dhathathreyan, K.S., Sathiyamoorthy,
D. & Verma, A. 2009. The electrical
conductivity of a composite bipolar plate for fuel cell applications.
Carbon 47(10): 2413-2418.
Kim, Y.A., Hayashi, T., Endo, M., Gotoh,
Y., Wada, N. & Seiyama, J. 2006. Fabrication
of aligned carbon nanotube-filled rubber composite. Scripta
Materialia 54(1): 31-35.
Köpplmayr, T., Milosavljevic, I., Aigner, M., Hasslacher, R., Plank,
B., Salaberger, D. & Miethlinger,
J. 2013. Influence of fiber orientation and length distribution
on the rheological characterization of glass-fiber-filled polypropylene.
Polymer Testing 32(3): 535-544.
Kuriger, R.J., Alam, M.K. & Anderson,
D.P. 2001. Strength prediction of partially aligned discontinuous
fiber-reinforced composites. Journal of Materials Research 16(1):
226-232.
Kuriger, R.J., Alam, M.K., Anderson,
D.P. & Jacobsen, R.L. 2002. Processing and characterization
of aligned vapor grown carbon fiber reinforced polypropylene. Composites
Part A: Applied Science and Manufacturing 33(1): 53-62.
Lee, J.H., Jang, Y.K., Hong, C.E., Kim, N.H., Li, P.
& Lee, H.K. 2009. Effect of carbon fillers on properties of
polymer composite bipolar plates of fuel cells. Journal of Power
Sources 193(2): 523-529.
Lux, F. 1993. Models proposed to explain the electrical
conductivity of mixtures made of conductive and insulating materials.
Journal of Materials Science 28(2): 285-301.
Massardier-Nageotte, V., Maazouz, A., Peix, G. & Bres, S. 2003. Methodologies
for the characterisation of glass fibre orientation and distribution in large components moulded from sheet molding compounds (SMC). Polymer Testing
22(8): 867-873.
Mathur, R.B., Dhakate, S.R., Gupta,
D.K., Dhami, T.L. & Aggarwal, R.K.
2008. Effect of different carbon fillers on the properties of graphite
composite bipolar plate. Journal of Materials Processing Technology
203(1-3): 184-192.
Mohd Radzuan, N.A., Sulong, A.B. & Sahari, J. 2017a.
A review of electrical conductivity models for conductive polymer
composite. International Journal of Hydrogen Energy 42(14):
9262-9273.
Mohd Radzuan, N.A., Yusuf Zakaria, M., Sulong, A.B. &
Sahari, J. 2017b. The effect of milled carbon fibre filler on electrical conductivity in highly conductive
polymer composites. Composites Part B: Engineering 110: 153-160.
Mohd Radzuan, N.A., Sulong, A.B.A.B., Rao Somalu, M.,
Radzuan, N.A.M., Sulong,
A.B.A.B. & Somalu, M.R. 2016. Optimization
of milled carbon fibre extrusion and polypropylene
process for conductive polymer composite. Sains
Malaysiana 45(12): 1913-1921.
Nakayama, Y., Takeda, E., Shigeishi,
T., Tomiyama, H. & Kajiwara,
T. 2011. Melt-mixing by novel pitched-tip kneading disks in a co-rotating
twin-screw extruder. Chemical Engineering Science 66(1):
103-110.
Panaitescu, D.M., Gabor, R.A., Nicolae,
C.A., Ghiurea, M., Mihailescu,
M. & Grigorescu, R.M. 2014. Influence
of melt processing induced orientation on the morphology and mechanical
properties of poly(styrene-b-ethylene/butylene-b-styrene) block
copolymers and their composites with graphite. Materials &
Design 64(0): 694-705.
Pötschke, P., Bhattacharyya, A.R. & Janke,
A. 2004. Melt mixing of polycarbonate with multiwalled
carbon nanotubes: Microscopic studies on the state of dispersion.
European Polymer Journal 40(1): 137-148.
Qi, L., Ju, L. & Zhou,
J. 2014. Tensile properties of 2D-Cf/Mg composite fabricated by
liquid-solid extrusion following vacuum pressure infiltration. Procedia
Engineering 81: 1577-1582.
Radzuan, N.A.M., Sulong,
A.B. & Somalu, M.R. 2018. Effects
of die configuration on the electrical conductivity of
polypropylene reinforced milled carbon fibers: An application on
a bipolar plate. Polymers 10(5): 558.
Rosli, R.E., Sulong,
A.B., Wan Daud, W.R., Zulkifley,
M.A., Rosli, M.I., Majlan,
E.H., Haque, M.A. & M. Radzuan,
N.A. 2018. The design and development of an HT-PEMFC test cell and
test station. International Journal of Hydrogen Energy https://doi.org/10.1016/j.ijhydene.2018.01.174.
Sharma, M., Rao, I.M. & Bijwe, J. 2009. Influence of orientation of long fibers in
carbon fiber-polyetherimide composites
on mechanical and tribological properties.
Wear 267(5-8): 839- 845.
Solaimurugan, S. & Velmurugan, R. 2008. Influence of in-plane
fibre orientation on mode I interlaminar fracture toughness of stitched
glass/polyester composites.
Composites Science and Technology 68: 1742-1752.
Suherman, H., Sahari,
J. & Sulong, A.B. 2013a. Effect of
small-sized conductive filler on the properties of an epoxy composite
for a bipolar plate in a PEMFC. Ceramics International 39(6):
7159-7166.
Suherman, H., Sulong,
A.B. & Sahari, J. 2013b. Effect of
the compression molding parameters on the in-plane and through-plane
conductivity of carbon nanotubes/ graphite/epoxy nanocomposites
as bipolar plate material for a polymer electrolyte membrane fuel
cell. Ceramics International 39(2): 1277-1284.
Sulong, A.B., Ramli,
M.I., Hau, S.L., Sahari,
J., Muhamad, N. & Suherman, H. 2013.
Rheological and mechanical properties of carbon nanotube/Graphite/SS316L/polypropylene
nanocomposite for a conductive polymer composite. Composites
Part B: Engineering 50: 54-61.
Taherian, R. 2014. A review of composite and
metallic bipolar plates in proton exchange membrane fuel cell: Materials,
fabrication, and material selection. Journal of Power Sources
265: 370-390.
Taherian, R., Hadianfard,
M.J. & Golikand, A.N. 2013. Manufacture
of a polymer-based carbon nanocomposite as bipolar plate of proton
exchange membrane fuel cells. Materials & Design 49:
242-251.
Taipalus, R., Harmia,
T., Zhang, M.Q. & Friedrich, K. 2001. The electrical conductivity
of carbon-fibre-reinforced polypropylene/polyaniline
complex-blends: Experimental characterisation
and modelling. Composites Science and Technology 61(6): 801-814.
Tungjitpornkull, S. & Sombatsompop,
N. 2009. Processing technique and fiber orientation angle affecting
the mechanical properties of E-glass fiber reinforced wood/PVC composites.
Journal of Materials Processing Technology 209(6): 3079-3088.
Unverfehrt, A. & Rehage,
H. 2015. Deformation, orientation and bursting of microcapsules
in simple shear flow: Wrinkling processes, tumbling and swinging
motions. Procedia IUTAM 16: 12-21.
Wang, J., Geng,
C., Luo, F., Liu, Y., Wang, K., Fu, Q. & He, B. 2011a. Shear
induced fiber orientation, fiber breakage and matrix molecular orientation
in long glass fiber reinforced polypropylene composites. Materials
Science and Engineering: A 528(7-8): 3169-3176.
Wang, Z., Fan, X., Wang, K., Deng,
H., Chen, F. & Fu, Q. 2011b. Fabrication of polypropylene/carbon
nanotubes composites via a sequential process of (rotating solid-state
mixing)- plus-(melt extrusion). Composites Science and Technology 71(11):
1397-1403.
Wang, S.F. & Ogale, A.A. 1993. Simulation of percolation behavior of anisotropic
short-fiber composites with a continuum model and non-cubic control
geometry. Composites Science and Technology 46(4): 389-398.
Wood, J.R., Zhao, Q. & Wagner,
H.D. 2001. Orientation of carbon nanotubes in polymers and its detection
by Raman spectroscopy. Composites Part A: Applied Science and
Manufacturing 32(3-4): 391-399.
Xiao, K.Q., Zhang, L.C. & Zarudi, I. 2007. Mechanical and rheological properties of
carbon nanotube-reinforced polyethylene composites. Composites
Science and Technology 67(2): 177-182.
Yusoff, M., Zuhri,
M., Salit, M.S., Ismail, N. & Wirawan,
R. 2010. Mechanical properties of short random oil palm fibre
reinforced epoxy composites. Sains
Malaysiana 39(1): 87- 92.
Zakaria, M.Y., Sulong,
A.B., Sahari, J. & Suherman,
H. 2015. Effect of the addition of milled carbon fiber as a secondary
filler on the electrical conductivity of graphite/epoxy composites
for electrical conductive material. Composites Part B: Engineering
83: 75-80.
Zhang, Z.X., Gao, C., Xin, Z.X. &
Kim, J.K. 2012. Effects of extruder parameters and silica on physico-mechanical and foaming properties of PP/wood-fiber
composites. Composites Part B: Engineering 43(4): 2047-2057.
*Corresponding author;
email: abubakar@ukm.edu.my
|