Sains Malaysiana 48(3)(2019): 677–684
http://dx.doi.org/10.17576/jsm-2019-4803-22
Fifth Order Multistep Block Method for Solving
Volterra Integro-Differential Equations of Second Kind
(Kaedah Blok Berbilanglangkah Peringkat Lima
bagi Penyelesaian Persamaan Pembezaan - Kamiran Volterra Jenis Kedua)
ZANARIAH ABDUL
MAJID1,2*
& NURUL ATIKAH MOHAMED1
1Institute for Mathematical
Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Mathematics Department,
Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
Received:
3 July 2018/Accepted: 21 November 2018
ABSTRACT
In the present paper, the multistep
block method is proposed to solve the linear and non-linear Volterra
integro-differential equations (VIDEs) of the second kind using
constant step size. The proposed block method of order five consists
of two point block method presented as in the simple form of Adams
Moulton type. The numerical solutions are obtained at two new values
simultaneously at each of the integration step. In VIDEs, the unknown function appears in
the form of derivative and under the integral sign. The approximation
of the integral part is estimated using the Boole’s quadrature rule.
The stability region is shown, and the numerical results are presented
to illustrate the performance of the proposed method in terms of
accuracy, total function calls and execution times compared to the
existing method.
Keywords: Block method; quadrature
rule; Volterra integro-differential equation
ABSTRAK
Dalam makalah ini, kaedah blok
berbilanglangkah dicadangkan bagi menyelesaikan persamaan pembezaan-kamiran
Volterra (PPKV) linear dan tak linear daripada jenis kedua menggunakan
saiz langkah yang malar. Kaedah blok peringkat lima yang dicadangkan
terdiri daripada dua titik blok yang dibentangkan dalam bentuk yang
mudah daripada jenis Adams Moulton. Penyelesaian berangka diperoleh
dalam dua nilai baru pada masa yang sama di setiap langkah kamiran.
Dalam PPKV,
fungsi yang tidak diketahui muncul dalam bentuk terbitan dan tanda
kamiran. Penghampiran bahagian kamiran dianggarkan dengan menggunakan
peraturan kuadratur Boole. Rantau kestabilan ditunjukkan dan keputusan
berangka dibentangkan untuk menggambarkan prestasi kaedah yang dicadangkan
daripada segi kejituan, jumlah panggilan fungsi dan masa pelaksanaan
berbanding kaedah sedia ada.
Kata kunci: Aturan kuadratur; kaedah blok; persamaan pembezaan-kamiran
Volterra
REFERENCES
Chang, S.H. 1982. On certain extrapolation methods for
the numerical solution of integro-differential equations. Mathematics
of Computation 39(159): 165-171.
Chen, H. & Zhang, C. 2011. Boundary value methods
for Volterra integral and integro-differential equations. Applied
Mathematics and Computation 218: 2619-2630.
Day, J.T. 1967. Note on the numerical solution of integro-differential
equations. The Computer Journal 9(4): 394-395.
Dehghan, M. & Salehi, R. 2012. The numerical solution
of the non-linear integro-differential equations based on the meshless
method. Journal of Computational and Applied Mathematics 236:
2367- 2377.
Faires, D. & Burden, R.L. 2005. Numerical Analysis.
Belmont, CA: Thomson Brooks/Cole.
Feldstein, A. & Sopka, J.R. 1974. Numerical methods
for nonlinear Volterra integro-differential equations. Siam J.
Numer. Anal. 11: 826-846.
Filiz, A. 2014. Numerical solution of linear Volterra
integro-differential equation using Runge-Kutta-Fehlberg method.
Applied and Computational Mathematics 3(1): 9-14.
Filiz, A. 2013. A fourth-order robust numerical method
for integro-differential equations. Asian Journal of Fuzzy and
Applied Mathematics 1(1): 28-33.
Ishak, F. & Ahmad, S.N. 2016. Development of extended
trapezoidal method for numerical solution of Volterra integro-differential
equations. International Journal of Mathematics, Computational,
Physical, Electrical and Computer Engineering 10(11): 52856.
Kürkçü, Ö.K., Aslan, E. & Sezer, M. 2017. A novel
collocation method based on residual error analysis for solving
integro-differential equations using hybrid Dickson and Taylor polynomials.
Sains Malaysiana 46(2): 335-347.
Lambert, L.D. 1973. Computational Methods in Ordinary
Differential Equations. New York: John Wiley & Sons, Inc.
Linz, P. 1969. Linear multistep methods
for Volterra integro-differential equations. Journal of the Association
for Computing Machinery 16(2): 295-301.
Lubich, C. 1982. Runge-Kutta theory for Volterra integro-differential
equations. Numer. Math. 40: 119-135.
Majid, Z.A. & Suleiman, M. 2011. Predictor-corrector
block iteration method for solving ordinary differential equations.
Sains Malaysiana 40(6): 659-664.
Makroglou, A. 1982. Hybrid methods in the numerical solution
of Volterra integro-differential equations. IMA Jounal of Numerical
Analysis 2: 21-35.
Mocarsky, W.L. 1971. Convergence of step-by-step methods
for non-linear integro-differential equations. IMA Journal of
Applied Mathematics 8(2): 235-239.
Mohamed, N.A. & Majid, Z.A. 2016. Multistep block
method for solving Volterra integro-differential equations. Malaysian
Journal of Mathematical Sciences 10: 33-48.
Yuan, W. & Tang, T. 1990. The numerical analysis
of implicit Runge-Kutta methods for a certain nonlinear integro-differential
equation. Mathematics of Computation 54(189): 155-168.
*Corresponding
author; email: zana_majid99@yahoo.com
|