Sains Malaysiana 48(3)(2019): 697–701

http://dx.doi.org/10.17576/jsm-2019-4803-24

 

Markov Chain Model and Stationary Test: A Case Study on Malaysia Social Security (SOCSO)

(Model Rantaian Markov dan Ujian Kepegunan: Suatu Kajian Kes terhadap Keselamatan Sosial Malaysia (PERKESO))

 

SHAMSHIMAH SAMSUDDIN1* & NORISZURA ISMAIL2

 

1Pusat Pengajian Sains Aktuari, Fakulti Sains dan Teknologi, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2Pusat Pengajian Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 12 May 2017/Accepted: 14 December 2018

 

ABSTRACT

Recently, the Markov chain model, which is a model that depends on the probability of transition, has been widely used in areas related to health problems. This article aims to build the yearly transition model for the health state of workers who contribute under the Employment Injury Scheme (EIS) SOCSO in Malaysia using the Markov chain model. In addition, the stationary test is carried out to confirm whether the model can be used for the projection of transition probabilities of the contributors’ health levels.

 

Keyworkds: Markov chain; stationary; transition probabilities

 

ABSTRAK

Sejak kebelakangan ini, model rantaian Markov, iaitu suatu model yang bergantung kepada kebarangkalian peralihan, telah banyak digunakan dalam bidang berkaitan masalah kesihatan. Kertas ini bertujuan untuk membina model peralihan tahunan bagi tahap kesihatan pekerja yang mencarum di bawah Skim Bencana Pekerjaan (SBP) PERKESO di Malaysia menggunakan model rantaian Markov. Selain itu, ujian kepegunan dijalankan untuk mengesahkan sama ada model yang diperoleh boleh digunakan untuk pengunjuran kebarangkalian peralihan bagi tahap kesihatan pencarum.

 

Kata kunci: Kebarangkalian peralihan; kepegunan; rantaian Markov

REFERENCES

Aktaş, S. 2015. Testing the transition probabilities in square contingency tables. Journal of Scientific Research & Reports 8(4): 1-6.

Anderson, T.W. & Goodman, L.A. 1957. Statistical inference about Markov chains. The Annals of Mathematical Statistics 28(1): 89-110.

Billingsley, P. 1961. Statistical methods in Markov chains. Ann. Math. Statist. 31(1): 12-40.

Blanco-Encomienda, F.J. 2013. A multi-state Markov model for projecting health care spending. European Scientific Journal 9(21): 745-752.

Hariyanto, E.A., Dickson, D. & Pitt, D.G.W. 2014. Estimation of disability transition probabilities in Australia I: Preliminary. Annals of Actuarial Science 8(01): 131-155.

Jain, S. 1986. Markov chain model and its application. Computers and Biomedical Research 19(4): 374-378.

Jung, J. 2006. Estimating Markov Transition Probabilities between Health States in the HRS Dataset. Indiana University-Bloomington.

Malaysia. 1969. Akta Keselamatan Sosial Pekerja 1969.

Samsuddin, S. & Ismail, N. 2015. Isu hilang upaya dikalangan pencarum PERKESO di Malaysia. Malaysia Labour Review 11(2): 85-94.

Samsuddin, S. & Ismail, N. 2016. Multi-state markov model for disability: A case of Malaysia social security (SOCSO). Innovations Through Mathematical and Statistical Research: Proceedings of the 2nd International Conference on Mathematical Sciences and Statistics (ICMSS2016).

Tainiter, M. 1963. Estimation, hypothesis testing and parameter correlation for Markov Chains. IEEE Transactions on Reliability 12(4): 26-35.

Taylor, H.M. & Karlin, S. 1998. An Introduction to Stochastic Modeling. 3rd edition. San Diego: Academic Press.

 

*Corresponding author; email: shamshimah@tmsk.uitm.edu.my

 

 

 

 

 

previous