Sains Malaysiana 48(4)(2019): 745–755

http://dx.doi.org/10.17576/jsm-2019-4804-06

 

Properties of Fly Ashes from Thermal Power Stations in Relation to Use as Soil Amendments

(Sifat Abu Cerobong dari Stesen Janakuasa Terma yang Berkaitan dengan Kegunaan sebagai Pindaan Tanah)

 

LE VAN THIEN1*, NGO THI TUONG CHAU1, LE THI THAM HONG1, NGUYEN THU TRANG1 & HIROYUKI FUTAMATA2

 

1Vietnam National University, University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

 

2Research Institute of Green Science and Technology, Shizuoka University, Suruga-ku, Shizuoka, 422-8529, Japan

 

Received: 4 December 2017/Accepted: 6 February 2019

 

ABSTRACT

Recycling fly ashes is a good alternative to disposal with the significant economic and environmental benefits. Characterization of fly ashes can be helpful to evaluate their use potentials. This study aimed to investigate the physical, chemical and mineralogical properties of fly ashes from five thermal power stations in Northern Vietnam in relation to use as sandy soil amendments. The results showed that the fly ashes were dominated by silt-sized and spherical particles and had low bulk densities. There was almost not significant difference in the surface charges among the fly ashes; however, their surface areas varied widely. The fly ashes were alkaline. The electrical conductivity and cation exchange capacity in the fly ashes were higher than those in the sandy soil. The concentrations of extractable K, P, Ca2+ and Mg2+ in the fly ashes were higher compared with the sandy soil. The major matrix elements in the fly ashes were Si, Al, and Fe together with significant percentages of K, Mg, Ca and Ti. Quartz was the most predominant mineral present in the fly ashes. Several radioactive elements were found in the fly ashes with very low concentrations. The potential to release trace elements from the fly ashes was below the regulatory guidelines. The amendment of fly ashes to the sandy soil led to the substantial decrease in the hydraulic conductivity but the increase in the plant-available water contents of the sandy soil. It is recommended to use the fly ashes as soil amendments for sandy soil amelioration.

 

Keywords: Fly ash; sandy soil; soil amelioration; soil amendment; thermal power station

 

ABSTRAK

Mengitar semula abu cerobong adalah alternatif pelupusan yang baik daripada sudut ekonomi dan alam sekitar. Pencirian abu cerobong membantu untuk menilai potensi kegunaannya. Kajian ini dijalankan untuk mengkaji sifat fizikal, kimia dan mineralogi abu cerobong dari lima stesen janakuasa haba di Vietnam Utara yang berkait dengan pemindahan tanah berpasir. Keputusan kajian menunjukkan bahawa abu cerobong didominasi oleh zarah yang bersaiz kelodak dan sfera dan mempunyai ketumpatan pukal yang rendah. Tiada perbezaan yang ketara pada cas permukaan bagi abu cerobong namun luas kawasan permukaannya adalah berbeza. Abu cerobong bersifat alkali. Kekonduksian elektrik dan kapasiti pertukaran kation abu cerobong lebih tinggi berbanding tanah berpasir. Kepekatan K, P, Ca2 + dan Mg2 + terekstrak di dalam abu cerobong lebih tinggi berbanding tanah berpasir. Unsur matriks utama dalam abu cerobong adalah Si, Al dan Fe berserta peratusan besar bagi unsur K, Ca, Mg dan Ti. Kuarza adalah mineral pradominan dalam abu cerobong. Beberapa unsur radioaktif ditemui dalam abu cerobong dengan kepekatan yang sangat rendah. Potensi untuk melepaskan unsur-unsur surih daripada abu cerobong adalah di bawah dasar garis panduan. Pindaan abu cerobong ke tanah berpasir membawa kepada penurunan ketara kekonduksian hidraulik tetapi peningkatan kandungan air yang terdapat dalam tanah berpasir. Adalah disarankan untuk menggunakan abu cerobong sebagai pindaan tanah untuk ameliorasi tanah berpasir.

 

Kata kunci: Abu cerobong; ameliorasi tanah; pindaan tanah; stesen janakuasa haba; tanah berpasir

REFERENCES

Adriano, D.C., Page, A.L., Elseewi, A.A., Chang, A.C. & Straughan, I. 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. Journal of Environmental Quality 9: 333-344.

Ahmaruzzaman, M. 2010. A review on the utilization of fly ash. Progress in Energy and Combustion Science 36: 327-363.

Aitken, R.L., Campbell, D.J. & Bell, L.C. 1984. Properties of Australian fly ashes relevant to their agronomic utilisation. Australian Journal of Soil Research 22: 443-453.

Asokan, P., Saxena, M. & Asolekar, S.R. 2005. Coal combustion residues environmental implications and recycling potentials. Resources, Conservation and Recycling 43: 239-262.

Basu, M., Pande, M., Bhadoria, P.B.S. & Mahapatra, S.C. 2009. Potential fly-ash utilization in agriculture: A global review. Progress in Natural Science 19: 1173-1186.

Bhangare, R.C., Tiwari, M., Ajmal, P.Y., Sahu, S.K. & Pandit, G.G. 2014. Distribution of natural radioactivity in coal and combustion residues of thermal power plants. Journal of Radio Analytical and Nuclear Chemistry 300: 17-22.

Blake, G.R. & Hartge, K.H. 1986. Bulk density. In Methods of Soil Analysis, Part 1, 2nd ed., Klute, A. (Ed.), Agron. Monogr. 9., ASA and SSSA, Madison, Wisconsin. pp. 363-375.

Campbell, D.J., Fox, W.E., Aitken, R.L. & Bell, L.C. 1983. Physical characteristics of sand amended with fly ash. Australian Journal of Soil Research 21: 147-154.

Cetin, S. & Pehlivan, E. 2007. The use of flyash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 298: 83-87.

Chang, A.C., Lund, L.J., Page, A.L. & Warneke, J.E. 1977. Physical properties of fly ash amended soils. Journal of Environmental Quality 6: 267-270.

Chansiriwat, W., Tanangteerapong, D. & Wantala, K. 2016. Synthesis of zeolite from coal fly ash by hydrothermal method without adding alumina and silica sources: Effect of aging temperature and time. Sains Malaysiana 45(11): 1723-1731.

Fediuk, R.S. & Yushin, A.M. 2015. The use of fly ash the thermal power plants in the construction. IOP Conf. Series: Materials Science and Engineering 93: 012070.

Femández-Jiménez, A. & Palomo, A. 2005. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cement and Concrete Research 35(6): 1204-1209.

Fisher, G.L., Chang, D.P.Y. & Brummer, M. 1976. Fly ash collected from electrostatic precipitators: Microcrystalline structures and the mystery of the spheres. Science 129: 553-555.

Gangloff, W.J., Ghodrati, M., Sims, J.T. & Vasilas, B.L. 2000. Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil. Water, Air & Soil Pollution 119: 231-245.

Ghodrati, M., Sims, J.T. & Vasilas, B.L. 1995. Evaluation of fly ash as a soil amendment for the Atlantic Coastal Plain: I. Soil hydraulic properties and elemental leaching. Water, Air & Soil Pollution 81: 349-361.

Hodgson, D.R. & Holliday, R. 1966. The agronomic properties of pulverized fuel ash. Chemistry & Industry 20: 785-790.

Inam, A. 2007. Use of flyash in turnip (Brassica rapa L.) cultivation. Pollution Research 26(1): 39-42.

Iyer, R.S. & Scott, J.A. 2001. Power station fly ash- A review of value-added utilization outside of the construction industry. Resources, Conservation and Recycling 31(3): 217-228.

Izidoro, J.C., Fungaro, D.A., Santos, F.S. & Wang, S. 2012. Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Processing Technology 97: 38-44.

Jala, S. & Goyal, D. 2006. Fly ash as a soil ameliorant for improving crop production-A review. Bioresource Technology 97: 1136-1147.

Kishor, P., Ghosh, A.K. & Kumar, D. 2010. Use of flyash in agriculture: A way to improve soil fertility and its productivity. Asian Journal of Agricultural Research 4(1): 1-14.

Klute, A. & Dirksen, C. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis, Part 1, 2nd ed., Klute, A. (Ed.), Agron. Monogr. 9., ASA and SSSA, Madison, Wisconsin. pp. 687-734.

Kolay, P.K. & Bhusal, S. 2014. Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization. Fuel 117: 118-124.

Ma, X., Zhang, Z. & Wang, A. 2016. The transition of fly ash-based geopolymer gels into ordered structures and the effect on the compressive strength. Construction and Building Materials 104: 25-33.

Nizar, I.K., Mustafa, Al Bakri., A.M., Rafiza, A.R., Kamarudin, H., Alida, A. & Zarina, Y. 2014. Study on physical and chemical properties of fly ash from different area in Malaysia. Key Engineering Materials 594-595: 985-989.

Okoye, F.N., Durgaprasad, J. & Singh, N.B. 2015. Mechanical properties of alkali activated fly ash/kaolin based geopolymer concrete. Construction and Building Materials 98: 685-691.

Onutai, S., Jiemsirilers, S., Thavorniti, P. & Kobayashi, T. 2015. Aluminium hydroxide waste based geopolymer composed of fly ash for sustainable cement materials. Construction and Building Materials 101: 298-308.

Pandey, V.C. & Singh, N. 2010. Impact of fly ash incorporation in soil systems. Agriculture, Ecosystems & Environment 136: 16-27.

Papastefanou, C. 2008. Radioactivity of coals and flyashes. Journal of Radioanalytical and Nuclear Chemistry 275(1): 29-35.

Pathan, S.M., Aylmore, L.A.G. & Colmer, T.D. 2003. Properties of several fly ash materials in relation to use as soil amendments. Journal of Environmental Quality 32: 687-693.

Pathan, S.M., Aylmore, L.A.G. & Colmer, T.D. 2001. Fly ash amendment of sandy soil to improve water and nutrient use efficiency in turf culture. Research Journal 9: 33-39.

Ram, L.C. & Masto, R.E. 2014. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments. Earth-Science Reviews 128: 52-74.

Ram, L.C. & Masto, R.E. 2010. An appraisal of the potential use of fly ash for reclaiming coal mine spoil. Journal of Environmental Management 91: 603-617.

Ram, L.C., Srivastava, N.K., Jha, S.K., Sinha, A.K., Masto, R.E. & Selvi, V.A. 2007. Management of lignite fly ash for improving soil fertility and crop productivity. Environmental Management 40: 438-452.

Rashad, A.M. 2015. A brief on high-volume Class F fly ash as cement replacement - A guide for Civil Engineer. International Journal of Sustainable Built Environment 4: 278-306.

Skousen, J., Paul Ziemkiewicz, Z. & Yang, J.E. 2012. Use of coal combustion by-products in mine reclamation: Review of case studies in the USA. Geosystem Engineering 15: 71-83.

Summers, R., Clarke, M., Pope, T. & O’Dea, T. 1998. Western Australian fly ash on sandy soils for clover production. Communications in Soil Science and Plant Analysis 29: 2757-2767.

Swamy, R.N. & Lambert, G.H. 1981. The microstructure of Lytag aggregate. The International Journal of Cement Composites and Lightweight Concrete 3(4): 273-282.

Taylor, E.M. & Schumann, G.E. 1988. Flyash and lime amendment of acidic coal soil to aid revegetation. Journal of Environmental Quality 17: 120-124.

TCVN 4406-87. Vietnamese Standard on Soil-Method for determination of total of exchange calcium and magnesium. Ministry of Science, Technology and Environment of the Socialist Republic of Vietnam.

TCVN 6498:1999 (ISO 11261:1995). Vietnamese Standard on Soil quality- Determination of total nitrogen: Modified Kjeldahl method. Ministry of Science, Technology and Environment of the Socialist Republic of Vietnam.

TCVN 6642:2000 (ISO 10694:1995). Vietnamese Standard on Soil Quality: Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). Ministry of Science, Technology and Environment of the Socialist Republic of Vietnam.

TCVN 5256:2009. Vietnamese Standard on Soil Quality: Method for Determination of Bio-Available Phosphorus. Ministry of Science and Technology of the Socialist Republic of Vietnam.

TCVN 8568:2010. Vietnamese Standard on Soil Quality: Method for Determination of Cation Exchange Capacity (CEC) by Ammonium Acetate Method. Ministry of Science and Technology of the Socialist Republic of Vietnam.

TCVN 8662:2011. Vietnamese Standard on Soil Quality: Method for Determination of Bio-Available Potassium. Ministry of Science and Technology of the Socialist Republic of Vietnam.

TCVN 10302:2014. Vietnamese Standard on Activity Admixture Fly Ash for Concrete, Mortar and Cement. Ministry of Science and Technology of the Socialist Republic of Vietnam.

Testa, S.M. 1997. Laboratory considerations. In The Reuse and Recycling of Contaminated Soil, edited by Testa, S.M. New York: Lewis Publishers. pp. 81-101.

Ukwattage, N.L., Ranjith, P.G. & Bouazza, M. 2013. The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon). Fuel 109: 400-408.

USEPA (United States Environmental Protection Agency). 1992. Method 1311: Toxicity Characteristic Leaching Procedure. Test Methods for Evaluating Solid Waste Physical/Chemical Methods. Publ. SW-846. EPA, Washington, DC.

USDA (United States Department of Agriculture). 2017. Soil Survey Manual. Soil Science Division Staff. Agriculture Handbook No. 18.

Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S. & Xi, Y.Q. 2015. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews 141: 105-121.

Yao, Z.T., Xia, M.S., Sarker, P.K. & Chen, T. 2014. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 120: 74-85.

Zheng, Y.J., Jensen, A.D., Windelin, J. & Jensen, F. 2012. Review of technologies for mercury removal from flue gas from cement production processes. Progress in Energy and Combustion Science 38: 599-629.

 

*Corresponding author; email: levanthien@hus.edu.vn

 

 

 

 

previous