Sains Malaysiana 48(4)(2019): 851–860
http://dx.doi.org/10.17576/jsm-2019-4804-17
Green Synthesis of Ag Nanoparticles and Their
Performance towards Antimicrobial Properties
(Sintesis Hijau Nanozarah Ag dan Prestasi ke Arah
Sifat Antimikrob)
SUNDERISHWARY S MUNIANDY1, S
SASIDHARAN2 & HOOI LING LEE1*
1Nanomaterials Research
Group, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau
Pinang, Malaysia
2Institute for Research
in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang,
Malaysia
Received:
11 April 2018/Accepted: 19 January 2019
ABSTRACT
Green synthesis is a forthcoming trend
in the nanotechnology field where classical methods of synthesis
are now replaced by inexpensive and eco-friendly methods. In this
study, a green method has been developed for the synthesis of
silver nanoparticles (AgNPs) where AgNPs were synthesised using
water-based facile hydrothermal method. Silver nitrate (AgNO3) and polyvinylpyrrolidone (PVP)
were used as precursor and reducing agents to produce AgNPs. The
molar ratio effect of the precursor and stabiliser, its reaction
temperature and reaction time were investigated. X-ray Powder
Diffraction (XRD),
Field-Emission Scanning Electron Microscope (FESEM)
and UV-Vis Spectrometry were used to characterise the AgNPs.
The as-synthesized AgNPs with different molar ratios of the precursor
to stabiliser were tested for antibacterial activities using Gram-positive
bacteria (Bacillus subtilis) and Gram-negative bacteria (Escherichia
coli). All the AgNPs samples exhibited antibacterial activities
that were stronger against Gram-negative bacteria, as compared
with Gram-positive bacteria. The diameter of the zone of inhibition
(ZOI)
increased with the increase of the AgNO3: PVP molar
ratios. The results obtained proved that uniform AgNPs synthesized
via green techniques have a high potential of influencing
applications involving antimicrobial properties.
Keywords: Antibacterial activities;
green synthesis; hydrothermal; nanoparticles; silver
ABSTRAK
Sintesis hijau adalah trend akan datang
dalam bidang nanoteknologi yang menggantikan kaedah sintesis tradisi
dengan kaedah yang mesra alam dan murah. Dalam kajian ini, kaedah
hijau telah dibangunkan untuk mensintesis nanozarah perak (AgNPs)
dengan AgNPs disintesis menggunakan air-berdasarkan kaedah reaksi
mudah hidroterma. Perak nitrat (AgNO3)
dan polivinilpirolidon (PVP) telah digunakan sebagai pelopor
dan ejen penurunan untuk menghasilkan AgNPs. Kesan nisbah molar
pelopor dan penstabil, suhu tindak balas dan masa tindak balas
telah dikaji. Ujian X-Ray Pembelauan Serbuk (XRD), Pancaran Medan Mikroskop Elektron
Pengimbas (FESEM) dan Spektroskopi UV-Vis
digunakan untuk mencirikan AgNPs. AgNPs disintesis dengan nisbah
molar yang berbeza daripada pelopor dan penstabil telah diuji
untuk aktiviti antibakteria menggunakan bakteria Gram-positif
(Bacillus subtilis) dan bakteria
Gram-negatif (Escherichia coli). Semua sampel AgNPs menunjukkan
aktiviti anti-bakteria yang kuat terhadap bakteria Gram-negatif,
berbanding dengan bakteria Gram-positif. Zon diameter perencatan
(ZOI)
meningkat dengan peningkatan nisbah molar AgNO3: PVP.
Keputusan yang diperoleh membuktikan bahawa AgNPs berseragam yang
disintesis melalui teknik hijau berpotensi tinggi untuk mempengaruhi
aplikasi yang melibatkan sifat antimikrob.
Kata kunci: Aktiviti anti-bakteria; hidroterma; nanozarah; perak;
sintesis hijau
REFERENCES
Abou, El-Nour., Kholoud,
M.M., Ala’a, Eftaiha., Abdulrhman, Al-Warthan. & Reda A.A., Ammar. 2010.
Synthesis and applications of silver nanoparticles. Arabian Journal of
Chemistry 3(3): 135-140.
Anastas, P. &
Eghbali, N. 2010. Green chemistry: Principles and practice. Chem. Soc. Rev. 39(1):
301-312.
Banik, B. & Dhekial,
A. 2015. A biological approach to synthesis of silver nanoparticles using
aqueous leaf extract of Houttuynia cordata. International Journal of
Materials and Biomaterials Applications 5(2): 10-16.
Chauhan, R., Abhishek,
K. & Jayanthi, A. 2013. A biological approach to the synthesis of silver
nanoparticles with Streptomyces sp. and its antimicrobial activity. Scientia
Pharmaceutica 81(2): 607-621.
Chook, S., Chia, C.,
Zakaria, S., Ayob, M., Kah, C., Huang, N., Neoh, H., Lim, H., Rahman, J. &
Raha Mohd Fadhil, R.A.R. 2012. Antibacterial performance of Ag nanoparticles
and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Research Letters 7(1): 541.
Chou, K.S. & Lai,
Y.S. 2014. Effect of polyvinyl pyrrolidone molecular weights on the formation
of nanosized silver colloids. Materials Chemistry and Physics 83: 82-88.
Gandhi, H. & Khan,
S. 2016. Biological synthesis of silver nanoparticles and its antibacterial
activity. Journal of Nanomedicine & Nanotechnology 7(2): 2-4.
Gharibshahi, L., Saion,
E., Gharibshahi, E., Shaari, A.H. & Matori, K.A. 2017. Structural and
optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 10(4): 402.
Genuino, H., Huang, H.,
Njagi, E., Stafford, L. & Suib, S.L. 2012. A review of green synthesis of
nanophase inorganic materials for green chemistry applications. Green
Nanoscience 8: 217-244.
Gudikandula, K. &
Maringanti, S.C. 2016. Synthesis of silver nanoparticles by chemical and
biological methods and their antimicrobial properties. Journal of
Experimental Nanoscience 11(9): 714-721.
Hebeish, A., El-Naggar,
M.E., Fouda, M.M.G., Ramadan, M.A., Al-Deyab, S.S. & El-Rafie, M.H. 2011.
Highly effective antibacterial textiles containing green synthesized silver
nanoparticles. Carbohydrate Polymers 86(2): 936-940.
Hsu, S.L.C. & Wu,
R.T. 2011. Preparation of silver nanoparticle with different particle sizes for
low-temperature sintering. International Conference on Nanotechnology and
Biosensors 2: 55-58.
Kan, C.X., Zhu, J.J.
& Zhu, X.G. 2008. Silver nanostructures with well-controlled shapes:
Synthesis, characterization and growth mechanisms. Journal of Physics D:
Applied Physics 41(15): 155304.
Khademalrasool, M. &
Farbod, M. 2015. A simple and high yield solvothermal synthesis of uniform
silver nanowires with controllable diameters. Journal of Nanostructures 5:
415-422.
Khodashenas, B. &
Ghorbani, H.R. 2015. Synthesis of silver nanoparticles with different shapes. Arabian
Journal of Chemistry. http://dx.doi.org/10.1016/j.arabjc.2014.12.014.
Korte, K. 2007. Rapid
synthesis of silver nanowires. National Nanotechnology Infrastructure
Network. pp. 28-29.
Landage, S.M. 2014.
Synthesis of nanosilver using chemical reduction methods. International
Journal of Advanced Research in Engineering and Applied Sciences 3(5):
14-22.
Mahmudin, L., Suharyadi,
E., Utomo, A.B.S. & Abraha, K. 2016. Influence of stabilising agent and
synthesis temperature on the optical properties of silver nanoparticles as
active materials in surface plasmon resonance (SPR) biosensor. AIP
Conference Proceedings 1725(1): 020041.
Maratha, A.K. 2011.
Green technique-solvent free. International Journal of Research in Ayurveda
& Pharmacy 2(4): 1079- 1086.
Mehr, F.P., Masoumeh, K.
& Parya, V. 2012. Synthesis of nano- Ag particles using sodium borohydride. Oriental Journal of Chemistry 31(3): 1831-1833.
Muniandy, S., Kaus, T.,
Sasidharan, M. & Lee. 2017. One-step green synthesis of TiO2-Ag
nanocomposites and their performance towards photocatalytic activities and
antimicrobial properties. Malaysian Journal of Catalysis 2: 28-34.
Muzamil, M., Khalid, N.,
Aziz, M.D. & Abbas, S.A. 2014. Synthesis of silver nanoparticles by silver
salt reduction and its characterization. IOP Conference Series: Materials
Science and Engineering 60: 12034.
Naima, M., Moulai-Mostefa, N. &
Yacine, B. 2015. Effects of operating parameters on the structural properties
of silver particles synthesized by chemical reduction using Poly(N-Vinylpyrrolidone). Particulate Science and Technology 33(5): 482-487.
Natsuki, J. 2015. A review of silver nanoparticles: Synthesis
methods, properties and applications. International Journal of Materials
Science and Applications 4(5): 325.
Niknejad, F., Mojtaba,
N., Roshanak, D.G. & Maryam, M. 2015. Green synthesis of silver
nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae. Current
Medical Mycology 1(3): 17-24.
Noordeen, S.,
Kaliyaperumal, K. & Parveen, M.N. 2013. Synthesis of silver nanoparticles
by using sodium borohydride as a reducing agent. International Journal of
Engineering Research and Technology 2(4): 388-397.
Nurani, S.J., Chandan
Saha, K., Rahman Khan, M.A. & Hossain Sunny, S.M. 2015. Silver
nanoparticles synthesis, properties, applications and future perspectives: A
short review. IOSR Journal of Electrical and Electronics Engineering Ver. I 10(6):
117-126.
Oku. 2016. World’s
largest Science, Technology & Medicine Agriculture and Biological Sciences
Grain Legume. United Kingdom: IntechOpen.
Pacioni, N.L.,
Borsarelli, C.D., Rey, V. & Veglia, A.V. 2015. Silver nanoparticle
applications. Engineering Materials. pp. 13-46.
Rashid, M.U., Md
Khairul, H.B. & Quayum, M.E. 2013. Synthesis of silver nano particles
(Ag-NPs) and their uses for quantitative analysis of Vitamin C tablets. Dhaka
University Journal of Pharmaceutical Sciences 12(1): 29-33.
Shankar, R., Groven, L.,
Amert, A., Whites, K.W. & Kellar, J.J. 2011. Non-aqueous synthesis of
silver nanoparticles using tin acetate as a reducing agent for the conductive
ink formulation in printed electronics. Journal of Materials Chemistry 21:
10871.
Shateri, K.A. &
Yazdanshenas, M.E. 2010. Superhydrophobic antibacterial cotton textiles. Journal
of Colloid and Interface Science 351(1): 293-298.
Song, Y.J., Wang, M.,
Zhang, X.Y., Wu, J.Y. & Zhang, T. 2014. Investigation on the role of the
molecular weight of polyvinyl pyrrolidone in the shape control of high-yield
silver nanospheres and nanowires. Nanoscale Research Letters 9(1): 17.
Srikar, S.K., Giri,
D.D., Pal, D.B., Mishra, P.K. & Upadhyay, S.N. 2016. Green synthesis of
silver nanoparticles: A review. Green and Sustainable Chemistry 6(1):
34-56.
Tran, Q.H., Nguyen, V.Q.
& Le, A-T. 2013. Silver nanoparticles: Synthesis, properties, toxicology,
applications and perspectives. Advances in Natural Sciences: Nanoscience and
Nanotechnology 4(3): 33001.
Wang, G.H., Zhu, J.J.,
Kan, C.X., Wan, J.G. & Han, M. 2011. High-yield synthesis of uniform Ag nanowires
with high aspect ratios by introducing the long-chain PVP in an improved polyol
process. Journal of Nanomaterials 2011: 982547.
Yan, J., Zou, G., Wu,
A., Ren, J., Yan, J., Hu, A., Liu, L. & Zhou, Y.N. 2012. Effect of PVP on
the low temperature bonding process using polyol prepared Ag nanoparticle paste
for electronic packaging application. Journal of Physics: Conference Series 379:
12024.
Yang, X. 2017. A study
on antimicrobial effects of nanosilver for drinking water disinfection. Springer
Theses 1: 13-36.
Yen, S.C. &
Mashitah, M.D. 2013. Biosynthesis of silver nanoparticles from schizophyllum
commune and in vitro antibacterial and antifungal activity studies. Journal
of Physical Science 24(2): 83-96.
Yu, B., Leung, K.M.,
Guo, Q., Lau, W.M. & Yang, J. 2011. Synthesis of Ag-TiO2 composite
nano thin film for antimicrobial application. Nanotechnology 22(11):
115603.
Zewde, B., Ambaye, A.,
Stubbs III, J. & Raghavan, D. 2016. A review of stabilized silver
nanoparticles-synthesis, biological properties, characterization, and potential
areas of applications. JMS Nanotechnology & Nanomedicine 4(2): 1-14.
Zhang, G., Shen, X.
& Yang, Y. 2011. Facile synthesis of monodisperse porous ZnO spheres by a
soluble starch-assisted method and their photocatalytic activity. Journal of
Physical Chemistry C 115: 7145-7152.
Zhang, X.F., Liu, Z.G.,
Shen, W. & Gurunathan, S. 2016. Silver nanoparticles: Synthesis,
characterization, properties, applications, and therapeutic approaches. International
Journal of Molecular Sciences 17(9): E1534.
Zhong, G.F., Iwasaki,
T., Nakayama, N. & Matsumoto, H. 2016. Single vertically aligned walled
carbon nanotubes. Journal of Physics: Conference Series 755: 11001.
Zhou, G. & Wang, W.
2012. Synthesis of silver nanoparticles and their antiproliferation against
human lung cancer cells in vitro. Oriental Journal of Chemistry 28(2):
651-655.
Zou, J., Xu, Y., Hou,
B., Wu, D. & Sun, Y. 2007. Controlled growth of silver nanoparticles in a
hydrothermal process. China Particuology 5(3): 206-212.
*Corresponding author; email: hllee@usm.my