Sains Malaysiana 48(4)(2019): 887–892

http://dx.doi.org/10.17576/jsm-2019-4804-21

 

A Half-Circular Distribution on a Circle

(Taburan Separa-Bulat dalam Bulatan)

 

ADZHAR RAMBLI1*, IBRAHIM MOHAMED2, KUNIO SHIMIZU3 & NORLINA MOHD RAMLI4

 

1Centre of Statistical & Decision Science Studies, Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3School of Statistical Thinking, The Institute of Statistical Mathematics, Tokyo, Japan

 

4Department of Ophtalmology, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 7 April 2017/Accepted: 18 January 2019

 

ABSTRACT

Up to now, circular distributions are defined in [0,2 π), except for axial distributions on a semicircle. However, some circular data lie within just half of this range and thus may be better fitted by a half-circular distribution, which we propose and develop in this paper using the inverse stereographic projection technique on a gamma distributed variable. The basic properties of the distribution are derived while its parameters are estimated using the maximum likelihood estimation method. We show the practical value of the distribution by applying it to an eye data set obtained from a glaucoma clinic at the University of Malaya Medical Centre, Malaysia.

 

Keywords: Gamma distribution; inverse stereographic projection; maximum likelihood estimation; trigonometric moments; unimodality

 

ABSTRAK

Sehingga kini, taburan bulatan ditakrifkan dalam [0,2 π), kecuali untuk taburan paksi aksial pada semi-bulatan. Walau bagaimanapun, terdapat data bulatan berada hanya separuh daripada julat ini dan ia lebih sesuai dengan taburan separuh-bulatan, maka kami mencadang dan membangunkan dalam kertas ini menggunakan teknik unjuran stereografik songsang pada pemboleh ubah taburan gamma. Sifat asas taburan diperoleh manakala parameter dinilai menggunakan kaedah anggaran kebolehjadian maksimum. Nilai praktikal taburan ini dipraktiskan pada set data mata yang diperoleh daripada klinik glaukoma di Pusat Kesihatan, Universiti Malaya, Malaysia.

 

Kata kunci: Anggaran kebolehjadian maksimum; momen trigonometrik; taburan Gamma; unimodaliti; unjuran stereografik songsang

REFERENCES

Abe, T., Shimizu, K. & Pewsey, A. 2010. Symmetric unimodal models for directional data motivated by inverse stereographic projection. Journal of the Japan Statistical Society 40(1): 45-61.

Alldredge, J.R., Mahtab, M.A. & Panek, L.A. 1974. Statistical analysis of axial data. The Journal of Geology 82(4): 519-524.

Fisher, N.I. 1993. Statistical Analysis of Circular Data. London: Cambridge University Press.

Gato, R. & Jammalamadaka, S.R. 2003. Inference for wrapped symmetric a -stable circular models. The Indian Journal of Statistics 65(2): 333-355.

Jammalamadaka, S.R. & SenGupta, A. 2001. Topics in Circular Statistics. Singapore: World Scientific.

Jones, M.C. & Pewsey, A. 2005. A family of symmetric distributions on the circle. Journal of the American Statistical Association 100: 1422-1428.

Kato, S. & Jones, M.C. 2010. A family of distributions on the circle with links to, and applications arising from, Möbius transformation. Journal of the American Statistical Association 105: 222-229.

Lund, U. 1999. Least circular distance regression for directional data. Journal of Applied Statistics 26: 723-733.

Mardia, K.V. 1972. Statistics of Directional Data. London: Academic Press.

Mardia, K.V. & Jupp, P.E. 2000. Directional Statistics. 2nd ed. Chichester: Wiley.

McKay, J. 1987. On computing discriminants. The American Mathematical Monthly 94(6): 523-527.

Minh, D.L.P. & Farnum, N.R. 2003. Using bilinear transformations to induce probability distributions. Communications in Statistics-Theory and Methods 32: 1-9.

Phani, Y., Girija, S.V.S. & Rao, A.V.D. 2012. Circular model induced by inverse stereographic projection on extreme-value distribution. Engineering Science and Technology 2(5): 881-888.

Venables, W.N. & Ripley, B.D. 2002. Modern Applied Statistics with S. 4th ed. New York: Springer.

Wang, M-Z. & Shimizu, K. 2012. On applying Möbius transformation to cardioids random variables. Statistical Methodology 9: 604-614.

 

*Corresponding author; email: adzfranc@gmail.com

 

previous