Sains Malaysiana 48(4)(2019): 887–892
http://dx.doi.org/10.17576/jsm-2019-4804-21
A Half-Circular Distribution on a Circle
(Taburan Separa-Bulat dalam Bulatan)
ADZHAR RAMBLI1*, IBRAHIM MOHAMED2, KUNIO SHIMIZU3 & NORLINA MOHD RAMLI4
1Centre of Statistical
& Decision Science Studies, Faculty of Computer and Mathematical Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
2Institute of
Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
3School of Statistical
Thinking, The Institute of Statistical Mathematics, Tokyo, Japan
4Department of
Ophtalmology, University of Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
Received:
7 April 2017/Accepted: 18 January 2019
ABSTRACT
Up to now, circular distributions
are defined in [0,2 π), except for axial distributions on a semicircle.
However, some circular data lie within just half of this range and thus may be
better fitted by a half-circular distribution, which we propose and develop in
this paper using the inverse stereographic projection technique on a gamma
distributed variable. The basic properties of the distribution are derived
while its parameters are estimated using the maximum likelihood estimation method.
We show the practical value of the distribution by applying it to an eye data
set obtained from a glaucoma clinic at the University of Malaya Medical Centre,
Malaysia.
Keywords: Gamma distribution;
inverse stereographic projection; maximum likelihood estimation; trigonometric
moments; unimodality
ABSTRAK
Sehingga kini, taburan bulatan
ditakrifkan dalam [0,2 π), kecuali untuk taburan paksi aksial pada
semi-bulatan. Walau bagaimanapun, terdapat data bulatan berada hanya separuh
daripada julat ini dan ia lebih sesuai dengan taburan separuh-bulatan, maka
kami mencadang dan membangunkan dalam kertas ini menggunakan teknik unjuran
stereografik songsang pada pemboleh ubah taburan gamma. Sifat asas taburan
diperoleh manakala parameter dinilai menggunakan kaedah anggaran kebolehjadian
maksimum. Nilai praktikal taburan ini dipraktiskan pada set data mata yang
diperoleh daripada klinik glaukoma di Pusat Kesihatan, Universiti Malaya,
Malaysia.
Kata kunci: Anggaran kebolehjadian maksimum; momen trigonometrik;
taburan Gamma; unimodaliti; unjuran stereografik songsang
REFERENCES
Abe, T.,
Shimizu, K. & Pewsey, A. 2010. Symmetric unimodal models for directional
data motivated by inverse stereographic projection. Journal of the Japan
Statistical Society 40(1): 45-61.
Alldredge,
J.R., Mahtab, M.A. & Panek, L.A. 1974. Statistical analysis of axial data. The
Journal of Geology 82(4): 519-524.
Fisher, N.I. 1993. Statistical
Analysis of Circular Data. London: Cambridge University Press.
Gato, R. & Jammalamadaka,
S.R. 2003. Inference for wrapped symmetric a -stable circular models. The
Indian Journal of Statistics 65(2): 333-355.
Jammalamadaka, S.R. & SenGupta, A.
2001. Topics in Circular Statistics. Singapore: World Scientific.
Jones, M.C. & Pewsey, A. 2005. A
family of symmetric distributions on the circle. Journal of the American
Statistical Association 100: 1422-1428.
Kato, S. & Jones, M.C. 2010. A family
of distributions on the circle with links to, and applications arising from,
Möbius transformation. Journal of the American Statistical Association 105:
222-229.
Lund, U. 1999. Least circular distance
regression for directional data. Journal of Applied Statistics 26: 723-733.
Mardia, K.V. 1972. Statistics of
Directional Data. London: Academic Press.
Mardia, K.V. & Jupp, P.E. 2000. Directional
Statistics. 2nd ed. Chichester: Wiley.
McKay, J. 1987. On computing
discriminants. The American Mathematical Monthly 94(6): 523-527.
Minh, D.L.P. & Farnum, N.R. 2003.
Using bilinear transformations to induce probability distributions. Communications
in Statistics-Theory and Methods 32: 1-9.
Phani, Y., Girija, S.V.S. & Rao,
A.V.D. 2012. Circular model induced by inverse stereographic projection on extreme-value
distribution. Engineering Science and Technology 2(5): 881-888.
Venables, W.N. & Ripley, B.D. 2002. Modern
Applied Statistics with S. 4th ed. New York: Springer.
Wang, M-Z. & Shimizu, K. 2012. On
applying Möbius transformation to cardioids random variables. Statistical
Methodology 9: 604-614.
*Corresponding author; email:
adzfranc@gmail.com