Sains Malaysiana 48(5)(2019):
1035–1042
http://dx.doi.org/10.17576/jsm-2019-4805-12
The Influence of Surfactant/Co-Surfactant
Hydrophilic-Lipophilic Balance on the Formation of Limonene-Based
Microemulsion as Vitamin C Carrier
(Pengaruh Keseimbangan Hidrofilik-Lipofilik
Surfaktan/Ko-Surfaktan
terhadap Pembentukan Mikroemulsi Berasaskan Limonena sebagai Pembawa Vitamin C)
RAMLI, S.1,2*,
CHYI,
K.T.1,
ZAINUDDIN,
N.1,
MOKHTAR,
W.N.A.W.1
& ABDUL RAHMAN, I.3
1Centre for Advanced
Materials and Renewable Resources, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Polymer Research
Center, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Nuclear Technology
Research Center, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 5 December 2018/Accepted:
19 March 2019
ABSTRACT
This research was conducted to
produce a limonene-based microemulsion
system as vitamin C carrier. The microemulsion
was produced using limonene as the oil phase, tween20 and tween80
as surfactants while propylene glycol, polyethylene glycol 400
and glycerol as co-surfactants. Pseudo-ternary phase diagrams
were constructed to determine the microemulsion area by using the water titration method at
25°C. The effect of hydrophilic-lipophilic balance (HLB)
value of the mixture of S/CoS on the
formation of limonene-based microemulsion
was studied. The HLB
value calculated for the mixture of tween20/propylene
glycol in the different ratio was between 10.1 and 13.4. From
the experiment, the preparation of limonene-based microemulsion system with tween20/propylene glycol was able
to provide large and high stability of microemulsion
region on ternary phase diagram (23.6%) while higher HLB value
resulted in larger microemulsion area
in ternary phase diagrams. The sole formulation with propylene
glycol was further selected to carry out the physicochemical
characterization of system’s stability, particle size and electrical
conductivity. All microemulsion systems
showed good stability for four weeks at temperature of 4, 25
and 40°C without any phase change and separation. Particle size
characterization results elucidated that all microemulsion
systems consisted particle size between 20 and 100 nm. The study
of electrical conductivity showed that water-in-oil microemulsion
was formed from 5-45% wt. of water whereas bicontinuous
microemulsion was formed from 50-90% wt. of water content.
Overall, the result showed that microemulsion
tween20/propylene glycol/limonene/water was potential as a carrier
system of vitamin C.
Keywords: HLB;
limonene; microemulsion; propylene
glycol; tween20
ABSTRAK
Kajian ini dijalankan untuk menghasilkan satu sistem mikroemulsi
berasaskan limonena
sebagai pembawa vitamin C. Mikroemulsi dihasilkan dengan menggunakan limonena sebagai fasa minyak, campuran
tween20 dan tween80 sebagai
surfaktan, manakala
propilena glikol, polietilena glikol 400 dan gliserol bertindak
sebagai ko-surfaktan.
Rajah fasa pseudo-ternari
dibina bagi menentukan
keluasan rantau
pembentukan mikroemulsi yang menggunakan kaedah penitratan air pada suhu 25°C. Kesan nilai keseimbangan hidrofilik-lipofilik (HLB)
bagi campuran S/KoS terhadap pembentukan
mikroemulsi berasaskan
limonena turut dikaji. Nilai HLB bagi campuran tween20/propilene glikol dalam pelbagai nisbah adalah antara
10.1 dan 13.4. Penyediaan
sistem mikroemulsi berasaskan limonena dengan tween20/propilena glikol berupaya memberikan rantau mikroemulsi yang luas pada gambar rajah fasa ternari (23.6%). Berdasarkan kajian ini, nilai HLB yang
tinggi telah
memberikan rantau mikroemulsi yang lebih luas pada gambar
rajah fasa ternari.
Formulasi yang terdiri daripada propilena glikol dipilih untuk pencirian fizikokimia yang melibatkan kestabilan sistem, saiz partikel dan
kekonduksian elektrik.
Perbandingan sifat fizikokimia dilakukan bagi sistem mikroemulsi
yang mengandungi vitamin C serta
sistem asas
tanpa penambahan vitamin C. Kesemua sistem mikroemulsi yang dikaji menunjukkan kestabilan yang tinggi selama empat
minggu pada
suhu 4, 25 dan 40°C tanpa sebarang perubahan dan pemisahan
fasa. Pencirian
saiz partikel menunjukkan
sistem mikroemulsi
mempunyai saiz partikel antara 20 dan 100 nm. Ujian kekonduksian elektrik pula menunjukkan mikroemulsi jenis air-dalam-minyak (a/m) terbentuk bagi peratusan air 5-45% bt. manakala peratusan
air antara 50-90% bt.
membentuk mikroemulsi dwiselanjar. Secara keseluruhan, sistem mikroemulsi tween20/propilena glikol/limonena/air berpotensi sebagai sistem pembawa vitamin C.
Kata kunci: HLB;
limonena; mikroemulsi;
propilena glikol; tween20
REFERENCES
Alexander,
A., Dwivedi, S., Ajazuddin,
Giri, T.K., Saraf,
S., Saraf, S. & Tripathi, D.K. 2012.
Approaches for breaking the barriers of drug permeation through
transdermal drug delivery. Journal of Controlled Release
164(1): 26-40.
Bachysky, M.O., Shah, N.H., Patel, C.I. & Malick, A.W. 1997. Factors affecting the efficiency of a self-emulsifying
oral delivery system. Drug Development and Industrial Pharmacy
23(8): 809-816.
Basit, A., Newton, J. & Lacey, L. 1998. The effect of polyethylene
glycol 400(Peg 400) on gastrointestinal transit. Journal
of Pharmacy and Pharmacology 50(S9): 97-97.
Chen,
H., Chang, X., Weng, T., Zhao, X.,
Gao, Z., Yang, Y., Xu, H. & Yang, X. 2004. A study of microemulsion
systems for transdermal delivery of triptolide.
Journal of Controlled Release 98(3): 427-436.
Cho,
Y.H., Kim, S., Bae, E.K., Mok, C.
& Park, J. 2008. Formulation of a cosurfactant-free
o/w microemulsion using nonionic surfactant mixtures. Journal
of Food Science 73(3): 115-121.
Chin,
H.J. 2013. Mikroemulsi berasaskan
minyak sawit
bagi aplikasi losyen
muka. Ijazah
Sarjana Muda, Sains
dan Teknologi,
Universiti Kebangsaan Malaysia (Unpublished).
Cui,
J., Yu, B., Zhao, Y., Zhu, W., Li, H., Lou, H. & Zhai,
G. 2009. Enhancement of oral absorption of curcumin by self-microemulsifying
drug delivery systems. International Journal of Pharmaceutics
371(1): 148-155.
Fanun, M. 2010. Properties of microemulsions
with mixed nonionic surfactants and citrus oil. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 369(1):
246-252.
Gadhave, A.D. & Waghmare,
J.T. 2014. A short review on microemulsion
and its application in extraction of vegetable oil. International
Journal of Research in Engineering and Technology 3(9):
147-158.
Gao,
Z.G., Choi, H.G., Shin, H.J., Park, K.M., Lim, S.J., Hwang,
K.J. & Kim, C.K. 1998. Physicochemical characterization
and evaluation of a microemulsion
system for oral delivery of cyclosporin
A. International Journal of Pharmaceutics 161(1): 75-86.
Hathout, R.M., Woodman, T.J., Mansour, S., Mortada, N.D., Geneidi, A.S. &
Guy, R.H. 2010. Microemulsion formulations
for the transdermal delivery of testosterone. European Journal
of Pharmaceutical Sciences 40(3): 188-196.
Herrera,
J.R., Peralta, R.D., Lopez, R.G., Cesteros,
L.C., Mendizabal, E. & Puig, J.E.
2003. Cosurfactant effects on the
polymerization of vinyl acetate in anionic microemulsion
media. Polymer 44(6): 1795-1802.
Ismail,
A.R., Wan Nurul Fatihah,
W.Y., Daik, R. & Hazimah,
A.H. 2014. Effect of glycerol derived co-surfactant on the ternary
phase behavior of palm-based microemulsions.
Journal of Oil Palm Research 26(3): 240-250.
Jadhav, J.K. & Sreenivas,
S.A. 2012. Review on chemicals permeation enhancer used in transdermal
drug delivery system. International Journal of Science Innovations
and Discoveries 2(6): 204-217.
Khalid,
N.R., Che Wel,
C.A., Alam, S.S. & Mokhtaruddin, S.A.
2018. Cosmetic for modern consumer: The impact of self-congruity
on purchase intention. International Journal of Asian Social
Science 8(1): 34-41.
Kale,
S.N. & Deore, S.L. 2017. Emulsion,
micro emulsion and nano emulsion:
A review. Systematic Reviews in Pharmacy 8(1): 39-47.
Kogan, A., Aserin, A. & Garti, N. 2007. Improved solubilization
of carbamazepine and structural transitions in nonionic microemulsions
upon aqueous phase dilution. Journal of Colloid and Interface
Science 315(2): 637-647.
Lawrence, M.J. & Rees,
G.D. 2000. Microemulsion-based media
as novel drug delivery systems. Advanced Drug Delivery Reviews
45(1): 89-121.
Liu, C.H., Chang, F.Y. & Hung,
D.K. 2011. Terpene microemulsions
for transdermal curcumin delivery: Effects of terpenes and cosurfactants.
Colloids and Surfaces B: Biointrefaces
82: 63-70.
Lopes, L.B. 2014. Overcoming the cutaneous
barrier with microemulsions. Pharmaceutics
6(1): 52-77.
Matsaridou, I., Barmpalexis,
P., Salis, A. & Nikolakakis,
I. 2012. The influence of surfactant HLB and oil/surfactant
ratio on the formation and properties of self-emulsifying pellets
and microemulsion reconstitution.
AAPS PharmaSciTech 13(4): 1319-1330.
Mohd Nadzir,
M., Fen, T.W., Mohamed, A.R. & Hisham,
S.F. 2017. Size and stability of curcumin niosome
from combinations of tween 80 and span 80. Sains
Malaysiana 46(12): 2455-2460.
Matsaridou, I., Barmpalexis,
P., Salis, A. & Nikolakakis,
I. 2012. The influence of surfactant HLB and oil/surfactant
on the formation and properties of self-emulsifying pellets
and microemulsion reconstitution.
AAPS PharmaSciTech 13(4): 1319-1330.
Ozturk, B., Argin,
S., Ozilgen, M. & Mcclements,
D.J. 2015. Formation and stabilization of nanoemulsion-based
vitamin E delivery systems using natural biopolymers: Whey protein
isolate and gum arabic. Food Chemistry
188(1): 256-263.
Pouton, C.W. 1985. Self-emulsifying drug
delivery systems: Assessment of the efficiency of emulsification.
International Journal of Pharmaceutics 27(2-3): 335-348.
Prausnitz, M.R. & Langer, R. 2008. Transdermal
drug delivery. Nature Biotechnology 26(11): 1261-1268.
Ramli, S., Norhman,
N., Zainuddin, N., Mohd
Ja’afar, S. & Abdul Rahman, I. 2017. Nanoemulsion based palm olein as
Vitamin E carrier. Malaysian Journal of Analytical Sciences
21(6): 1399-1408.
Ramli, S., Mohd
Ja’afar, S., Abdul Sisak,
M.A., Zainuddin, N. & Abdul Rahman,
I. 2015. Formulation and physical characterization of microemulsion
based carboxymethyl cellulose as vitamin
C carrier. Malaysian Journal of Analytical Sciences 19(1):
275-283.
Ramli, S., Ross, B.P. & Gentle, I.R.
2009. Formulation and physical characterization of microemulsions
containing isotretinoin. International
Conference on Biomedical and Pharmaceutical Engineering. pp.
1-7.
Rehman, K. & Zulfakar,
M.H. 2014. Recent advances in gel technologies for topical and
transdermal drug delivery. Drug Development and Industrial
Pharmacy 40(4): 433-440.
Rehman, K., Mohd
Amin, M.C. & Zulfakar, M.H. 2014.
Development and physical characterization of polymer-fish oil
bigel (hydrogel/oleogel)
system as a transdermal drug delivery vehicle. Journal of
Oleo Science 63(10): 961-970.
Rozman, B., Zvonar,
A., Falson, F. & Gasperlin,
M. 2009. Temperature-sensitive microemulsion
gel: An effective topical delivery system for simultaneous delivery
of Vitamins C and E. AAPS PharmSciTech
10(1): 54-61.
Sail, M.A., Wan Mustafa, W.A., Mohamad,
Y.S., Maskat, M.Y. & Shamsuddin,
A.F. 2018. Optimisation of cinnamaldehyde-in-water
nanoemulsion formulation using central
composite rotatable design. Sains
Malaysiana 47(9): 1999-2008.
Shah, V.P., Behl,
C.R., Flynn, G.L., Higuchi, W.I. & Schaefer, H. 1992. Principles
and criteria in the development and optimization of topical
therapeutic products. International Journal of Pharmaceutics
82: 21-28.
Shaninuzzaman, M., Yaakob,
Z. & Moniruzzaman, M. 2016. Medicinal
and cosmetics soap production from Jatropha oil. Journal
of Cosmetic Dermatology 15(2): 185-193.
Zainuddin, N., Ahmad, I., Abdul Rahman, I.
& Ramli, S. 2017. Kesan
penambahan limonene terhadap
mikroemulsi asid
oleic/cremophor Rh 40/transcutol/air.
Sains Malaysiana 46(10):
1797-1805.
*Corresponding author;
email: su_ramli@ukm.edu.my