Sains Malaysiana 48(5)(2019): 1065–1073
http://dx.doi.org/10.17576/jsm-2019-4805-15
In vitro Effects of Various Antimicrobials
Alone and in Combinations against Imipenem-Resistant Pseudomonas
aeruginosa
(Kesan In vitro
Pelbagai Antimikrob
Sendiri dan Gabungan terhadap
Rintangan-Imipenem Pseudomonas
aeruginosa)
WANUTSANUN TUNYAPANIT1*,
PORNPIMOL
PRUEKPRASERT1,
KAMOLWISH
LAOPRASOPWATTANA1
& SUREERAT CHELAE2
1Department of Pediatrics, Faculty
of Medicine, Prince of Songkla University, Hat Yai, Songkhla
90110, Thailand
2Department of Pathology, Faculty of
Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110,
Thailand
Received:
8 October 2018/Accepted: 21 February 2019
ABSTRACT
Imipenem-resistant Pseudomonas
aeruginosa (IRPA) infection is a serious problem
in hospitals. Combination therapy is an alternative treatment
for this infection. In this study, the in vitro activities
of amikacin, aztreonam, ceftazidime, ciprofloxacin, colistin,
imipenem, and piperacillin/tazobactam alone and in various combinations
were determined by E-test for 38 imipenem-resistant P. aeruginosa
isolates obtained from a Thai hospital. Of the 38 IRPA isolates, 9 (24%) were low-level
IRPA
(defined as MICs of imipenem 8-32 μg/mL)
and 29 (76%) were high-level IRPA (defined as MICs
of imipenem >32 μg/mL). The high-level IRPA isolates
were susceptible to colistin (90%), piperacillin/tazobactam
(72%), and amikacin (52%). The low-level IRPA isolates were susceptible to colistin
(100%) and all other antimicrobials tested (78%-89%). The MIC50
value of colistin against both the high-level
and low-level IRPA isolates
was 1.5 μg/mL. Of all the antimicrobial combinations
tested, ceftazidime plus ciprofloxacin displayed the highest
percentages of synergistic effects against IRPA isolates (26%, 10/38 isolates) and
a high percentages of synergistic effects against high-level
IRPA
isolates (21, 6/29 isolates), with no antagonistic
effects detected. Colistin had the greatest activity against
most IRPA isolates
among all of the antimicrobials tested, while ceftazidime plus
ciprofloxacin showed promise in treating infections caused by
IRPA isolates
including high-level IRPAs.
Keywords: Etest; imipenem resistant;
Pseudomonas aeruginosa; synergy
ABSTRAK
Jangkitan rintangan-imipenem
Pseudomonas
aeruginosa (IRPA) merupakan masalah yang serius di
hospital. Terapi gabungan adalah rawatan alternatif bagi jangkitan
ini. Dalam kajian ini, aktiviti in vitro amikasin, aztreonam,
ceftazidime, ciprofloxacin, colistin, imipenem dan piperacillin/tazobactam
semata-mata serta pelbagai gabungan ditentukan oleh ujian E-38
rintangan-imipenem pencilan P. aeruginosa yang diperoleh
daripada sebuah hospital di Thailand. Dalam pencilan 38 IRPA, 9 (24%) ialah IRPA tahap
rendah (ditakrifkan sebagai MICs imipenem 8-32 μg/mL)
dan 29 (76%) IRPA tahap tinggi (ditakrifkan sebagai MICs
imipenem > 32 μg/mL). Pencilan IRPA tahap
tinggi telah menyebabkan ia terdedah kepada colistin (90%),
piperacillin/tazobactam (72%) dan amikasin (52%). Pencilan IRPA tahap
rendah rentan kepada colistin (100%) dan semua ujian antimikrob
(78% - 89%). Nilai colistin MIC50 terhadap kedua-dua pencilan di peringkat
tinggi dan IRPA tahap rendah adalah 1.5 μg/mL.
Daripada semua gabungan antimikrob
yang diuji, ceftazidime dan ciprofloxacin menunjukkan peratusan
tertinggi kesan bersinergisma terhadap pencilan IRPA
(26%, pencilan 10/38) dan tinggi peratusan daripada
kesan bersinergisma terhadap tahap tinggi IRPA terasing (21%, pencilan 6/29)
dengan tiada kesan berantagonis dikesan. Colistin menunjukkan
aktiviti terbesar berbanding kebanyakan pencilan IRPA antara
semua antimikrob yang diuji, manakala ceftazidime dan ciprofloxacin
menunjukkan keupayaan dalam merawat jangkitan yang disebabkan
oleh pencilan IRPA termasuk
IRPAs
tahap tinggi.
Kata kunci: Etest; Pseudomonas aeruginosa; rintangan imipenem; sinergi
REFERENCES
Amer, W.H. &
Abd-Elmonsef, M.M.E. 2016. Effective in vitro synergy
of piperacillin/tazobactam plus either netilmicin or aztreonam
against metallo-b-lactamase-producing Pseudomonas aeruginosa.
Univers. J. Microbiol. Res. 4(3): 59-65.
Altoparlak, U., Aktas,
F., Celebi, D., Ozkurt, Z. & Akcay, M.N. 2005. Prevalence
of metallo-b-lactamase among Pseudomonas aeruginosa and
Acinetobacter baumannii isolated from burn wounds and
in vitro activities of antibiotic combinations against
these isolates. Burns 31: 707-710.
Breidenstein, E.B.M.,
Fuente-Nunez, C.D.L. & Hancock, R.E.W. 2011. Pseudomonas
aeruginosa: All roads lead to resistance. Trends Microbiol.
19(8): 419-426.
Clinical and Laboratory
Standards Institute. 2014. Performance standards for antimicrobial
susceptibility testing. Twenty-fourth informational supplement.
M100-S24: Wayne.
Dalfino, L., Puntillo,
F., Ondok, M.J., Mosca, A., Monno, R., Coppolecchia, S., Spada,
M.L., Bruno, F. & Brienza, N. 2015. Colistin-associated
acute kidney injury in severely III patients: A step toward
a better renal care? A prospective cohort study. Clin. Infect
Dis. 61: 1771-1777.
Dundar, D. &
Otkun, M. 2010. In vitro efficacy of synergistic antibiotic
combinations in multidrug resistant Pseudomonas aeruginosa
strains. Yonsei Med. J. 51(1): 111-116.
Faizah, M.H., Anisah,
N., Yusof, S., Noraina, A.R. & Adibah, M.R. 2017. Molecular
detection of bacterial endosymbionts in Acanthamoeba spp.:
A preliminary study. Med & Health Dec. 12(2): 286-292.
Farzana, A. &
Shamsuzzaman, S.M. 2015. In vitro efficacy of synergistic
antibiotic combinations in imipenem resistant Pseudomonas
aeruginosa strains. Bangladesh J. Med. Microbiol. 9(1):
3-8.
Fujimura, S., Takane,
H., Nakano, Y. & Watanabe, A. 2009. In vitro synergy
studies based on tazobactam/piperacillin against clinical isolates
of metallo-b-lactamase-producing Pseudomonas aeruginosa.
J. Antimicrob. Chemother. 10: 1-2.
Gerceker, A.A. &
Gurler, B. 1995. In vitro activities of various antibiotics,
alone and in combination with amikacin against Pseudomonas
aeruginosa. J. Antimicrob. Chemother. 36: 707-711.
Giligan, P.H. 1995.
Pseudomonas and Burlkholder. In Manual of Clinical
Microbiology, 6th ed., edited by Murray, P.R., Baron, E.J.,
Pfaller, M.A., Tenover, F.C. & Yolken, R.H. Washington,
DC: ASM Press. pp. 509-519.
Goli, H.R., Nahaei,
M.R., Rezaee, M.A., Hasani, A., Kafil, H.S. & Aghazadeh,
M. 2016. Emergence of colistin resistant Pseudomonas aeruginosa
at Tabriz hospital, Iran. Iran J. Microbiol. 8(1):
62-69.
Golle, A., Janezic,
S. & Rupnik, M. 2017. Low overlap between carbapenem resistant
Pseudomonas aeruginosa genotypes isolated from hospitalized
patients and wastewater treatment plants. PloS ONE 12(10):
e0186736.
Harris, A.D., Perencevich,
E., Roghmann, M.C., Morris, G., Kaye, K.S. & Johnson, J.A.
2002. Risk factors for piperacillin-tazobactam-resistant Pseudomonas
aeruginosa among hospitalized patients. Antimicrob. Agents
Chemother. 46(3): 854-858.
Kang, C.I. &
Song, J.H. 2013. Antimicrobial resistance in Asia: Current epidemiology
and clinical implications. Infect. Chemother. 45(1):
22-31.
Kanj, S.S. &
Kanafani, Z.A. 2011. Current concepts in antimicrobial therapy
against resistant gram-negative organisms: Extended-spectrum
β-lactamase-producing Enterobacteriaceae, carbapenem-resistant
Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa.
Mayo. Clin. Proc. 86(3): 250-259.
Laupland, K.B., Parkins,
M.D., Church, D.L., Gregson, D.B., Louie, T.J., Conly, J.M.,
Elsayed, S. & Pitout, J.D.D. 2005. Population-based epidemiological
study of infections caused by carbapenem-resistant Pseudomonas
aeruginosa in the Calgary health region: Importance of metallo-β-lactamase
(MBL)-producing strains. J. Infect. Dis. 192(1): 1606-1612.
Leung, C.H., Wang,
N.Y., Liu, C.P., Weng, L.C., Hsieh, F.C. & Lee, C.M. 2008.
Antimicrobial therapy and control of multidrug-resistant Pseudomonas
aeruginosa bacteremia in a teaching hospital in Taiwan.
J. Microbiol. Immunol. Infect. 41: 491-498.
Lister, P.D., Wolter,
D.J. & Hanson, N.D. 2009. Antibacterial-resistant Pseudomonas
aeruginosa: Clinical impact and complex regulation of chromosomally
encoded resistance mechanisms. Clin. Microbiol. Rev. 22(4):
582-610.
Memar, M.Y., Pormehrali,
R., Alizadeh, N., Ghotaslou, R. & Baghi, H.B. 2016. Colistin,
an option for treatment of multiple drug resistant Pseudomonas
aeruginosa. Physiol. Pharmacol. 20: 130-136.
Moore, N.M. &
Flaws, M.L. 2011. Treatment strategies and recommendations for
Pseudomonas aeruginosa infections. Clin. Lab. Sci.
24(1): 52-56.
Nazli, E., Zer, Y.
& Eksi, F. 2015. In vitro efficacy of various antibiotic
combinations against Pseudomonas aeruginosa isolates.
J. Int. Med. Res. 43(2): 217-225.
Pai, H., Kim, J.W.,
Kim, J., Lee, J.H., Choe, K.W. & Gotoh, N. 2001. Carbapenem
resistance mechanisms in Pseudomonas aeruginosa clinical
isolates. Antimicrob. Agents Chemother. 45(2): 480-484.
Pankey, G.A. &
Ashcraft, D.S. 2005. In vitro synergy of ciprofloxacin
and gatifloxacin against ciprofloxacin-resistant Pseudomonas
aeruginosa. Antimicrob. Agents Chemother. 49(7):
2959-2964.
Patzer, J.A. &
Dzierzanowska, D. 2007. Increase of imipenem resistance among
Pseudomonas aeruginosa isolates from a Polish paediatric
hospital (1993-2002). Int. J. Antimicrob. Agents 29:
153-158.
Sader, H.S., Huynh,
H.K. & Jones, R.N. 2003. Contemporary in vitro synergy
rates for aztreonam combined with newer fluoroquinolones and
b-lactams tested against gram-negative bacilli. Diagn. Microbiol.
Infect. Dis. 47: 547-550.
Sanal, L., Sen, S.,
Cesur, S. & Yilmaz, N. 2016. In vitro synergistic
efficacy of various antibiotic combinations against multi-drug-resistant
Pseudomonas aeruginosa isolates obtained from patients
in intensive care units. Acta Medica. Mediterranea. 32:
1041-1046.
Soboh, F., Khoury,
A.E., Zamboni, A.C., Davidson, D. & Mittelman, M.W. 1995.
Effects of ciprofloxacin and protamine sulfate combinations
against catheter associated Pseudomonas aeruginosa biofilms.
Antimicrob. Agents Chemother. 39(6): 1281-1286.
Song, M., Dilworth, T.J., Munson,
E., Davis, J. & Elshaboury, R.H. 2017. Results of a local
combination therapy antibiogram for Pseudomonas aeruginosa
isolates: Is double worth the trouble? Ther. Adv. Infectious
Dis. 4(6): 165-170.
Song, W., Woo, H.J., Kim, J.S. &
Lee, K.M. 2003. In vitro activity of b-lactams in combination
with other antimicrobial agents against resistant strains of
Pseudomonas aeruginosa. Int. J. Antimicrob. Agents
21: 8-12.
Sueke, H., Kaye, S.B., Neal, T., Hall,
A., Tuft, S. & Parry, C.M. 2010. An in vitro investigation
of synergy or antagonism between antimicrobial combinations
against isolates from bacterial keratitis. Invest. Ophthalmol.
Vis. Sci. 51(8): 4151- 4155.
Tam, V.H., Chang, K.T., Abdelraouf,
K., Brioso, C.G., Ameka, M., McCaskey, L.A., Weston, J.S., Caeiro,
J.P. & Garey, K.W. 2010. Prevalence, resistance mechanisms,
and susceptibility of multidrug-resistant bloodstream isolates
of Pseudomonas aeruginosa. Antimicrob. Agents Chemother.
54(3): 1160- 1164.
Tausk, F., Evans, M.E., Patterson,
L.S., Federspiel, C.F. & Stratton, C.W. 1985. Imipenem-induced
resistance to antipseudomonal b-lactams in Pseudomonas aeruginosa.
Antimicrob. Agents Chemother. 28(1): 41-45.
Tellis, R.C., Vidyasagar, S. &
Moosabba, M.S. 2016. Activity of antibiotic combinations against
multidrug resistant Pseudomonas aeruginosa: A study from
South India. Int. J. Microbiol. Allied Sci. 2(4): 27-34.
Tolera, M., Abate, D., Dheresa, M.
& Marami, D. 2018. Bacterial nosocomial infections and antimicrobial
susceptibility pattern among patients admitted at Hiwot Fana
Specialized University Hospital, Eastern Ethiopia. Adv. Med.
doi:10.1155/2018/2127814.
Vidaillac, C., Benichou, L. &
Duval, R.E. 2012. In vitro synergy of colistin combinations
against colistin-resistant Acinetobacter baumannii, Pseudomonas
aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob.
Agents Chemother. 56(9): 4856-4861.
White, R.L., Burgess, D.S., Manduru,
M. & Bosso, J.A. 1996. Comparison of three different in
vitro methods of detecting synergy: Time-kill, checkerboard,
and E test. Antimicrob. Agents Chemother. 40(8): 1914-1918.
Wu, H., Moser, C., Wang, H.Z., Hoiby,
N. & Song, Z.J. 2015. Strategies for combating bacterial
biofilm infections. Int. J. Oral Sci. 7: 1-7.
Yamaki, K.I., Tanaka, T., Takagi,
K. & Ohta, M. 1998. Effects of aztreonam in combination
with antipseudomonal antibiotics against Pseudomonas aeruginosa
isolated from patients with chronic or recurrent lower respiratory
tract infection. J. Infect. Chemother. 4: 50-55.
Yasmin, F., Akhtar, N. & Hameed,
A. 2013. In vitro synergistic effect of ciprofloxacin
with aminoglycosides against multidrug resistant-Pseudomonas
aeruginosa. Pak. J. Pharm. Sci. 26(5): 1041-1044.
*Corresponding author;
email: wanutsanun.t@psu.ac.th