Sains Malaysiana 48(5)(2019): 1065–1073

http://dx.doi.org/10.17576/jsm-2019-4805-15

 

In vitro Effects of Various Antimicrobials Alone and in Combinations against Imipenem-Resistant Pseudomonas aeruginosa

(Kesan In vitro Pelbagai Antimikrob Sendiri dan Gabungan terhadap Rintangan-Imipenem Pseudomonas aeruginosa)

 

WANUTSANUN TUNYAPANIT1*, PORNPIMOL PRUEKPRASERT1, KAMOLWISH LAOPRASOPWATTANA1 & SUREERAT CHELAE2

 

1Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

 

2Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

 

Received: 8 October 2018/Accepted: 21 February 2019

 

ABSTRACT

Imipenem-resistant Pseudomonas aeruginosa (IRPA) infection is a serious problem in hospitals. Combination therapy is an alternative treatment for this infection. In this study, the in vitro activities of amikacin, aztreonam, ceftazidime, ciprofloxacin, colistin, imipenem, and piperacillin/tazobactam alone and in various combinations were determined by E-test for 38 imipenem-resistant P. aeruginosa isolates obtained from a Thai hospital. Of the 38 IRPA isolates, 9 (24%) were low-level IRPA (defined as MICs of imipenem 8-32 μg/mL) and 29 (76%) were high-level IRPA (defined as MICs of imipenem >32 μg/mL). The high-level IRPA isolates were susceptible to colistin (90%), piperacillin/tazobactam (72%), and amikacin (52%). The low-level IRPA isolates were susceptible to colistin (100%) and all other antimicrobials tested (78%-89%). The MIC50 value of colistin against both the high-level and low-level IRPA isolates was 1.5 μg/mL. Of all the antimicrobial combinations tested, ceftazidime plus ciprofloxacin displayed the highest percentages of synergistic effects against IRPA isolates (26%, 10/38 isolates) and a high percentages of synergistic effects against high-level IRPA isolates (21, 6/29 isolates), with no antagonistic effects detected. Colistin had the greatest activity against most IRPA isolates among all of the antimicrobials tested, while ceftazidime plus ciprofloxacin showed promise in treating infections caused by IRPA isolates including high-level IRPAs.

 

Keywords: Etest; imipenem resistant; Pseudomonas aeruginosa; synergy

 

ABSTRAK

Jangkitan rintangan-imipenem Pseudomonas aeruginosa (IRPA) merupakan masalah yang serius di hospital. Terapi gabungan adalah rawatan alternatif bagi jangkitan ini. Dalam kajian ini, aktiviti in vitro amikasin, aztreonam, ceftazidime, ciprofloxacin, colistin, imipenem dan piperacillin/tazobactam semata-mata serta pelbagai gabungan ditentukan oleh ujian E-38 rintangan-imipenem pencilan P. aeruginosa yang diperoleh daripada sebuah hospital di Thailand. Dalam pencilan 38 IRPA, 9 (24%) ialah IRPA tahap rendah (ditakrifkan sebagai MICs imipenem 8-32 μg/mL) dan 29 (76%) IRPA tahap tinggi (ditakrifkan sebagai MICs imipenem > 32 μg/mL). Pencilan IRPA tahap tinggi telah menyebabkan ia terdedah kepada colistin (90%), piperacillin/tazobactam (72%) dan amikasin (52%). Pencilan IRPA tahap rendah rentan kepada colistin (100%) dan semua ujian antimikrob (78% - 89%). Nilai colistin MIC50 terhadap kedua-dua pencilan di peringkat tinggi dan IRPA tahap rendah adalah 1.5 μg/mL. Daripada semua gabungan antimikrob yang diuji, ceftazidime dan ciprofloxacin menunjukkan peratusan tertinggi kesan bersinergisma terhadap pencilan IRPA (26%, pencilan 10/38) dan tinggi peratusan daripada kesan bersinergisma terhadap tahap tinggi IRPA terasing (21%, pencilan 6/29) dengan tiada kesan berantagonis dikesan. Colistin menunjukkan aktiviti terbesar berbanding kebanyakan pencilan IRPA antara semua antimikrob yang diuji, manakala ceftazidime dan ciprofloxacin menunjukkan keupayaan dalam merawat jangkitan yang disebabkan oleh pencilan IRPA termasuk IRPAs tahap tinggi.

 

Kata kunci: Etest; Pseudomonas aeruginosa; rintangan imipenem; sinergi

REFERENCES

Amer, W.H. & Abd-Elmonsef, M.M.E. 2016. Effective in vitro synergy of piperacillin/tazobactam plus either netilmicin or aztreonam against metallo-b-lactamase-producing Pseudomonas aeruginosa. Univers. J. Microbiol. Res. 4(3): 59-65.

Altoparlak, U., Aktas, F., Celebi, D., Ozkurt, Z. & Akcay, M.N. 2005. Prevalence of metallo-b-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns 31: 707-710.

Breidenstein, E.B.M., Fuente-Nunez, C.D.L. & Hancock, R.E.W. 2011. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 19(8): 419-426.

Clinical and Laboratory Standards Institute. 2014. Performance standards for antimicrobial susceptibility testing. Twenty-fourth informational supplement. M100-S24: Wayne.

Dalfino, L., Puntillo, F., Ondok, M.J., Mosca, A., Monno, R., Coppolecchia, S., Spada, M.L., Bruno, F. & Brienza, N. 2015. Colistin-associated acute kidney injury in severely III patients: A step toward a better renal care? A prospective cohort study. Clin. Infect Dis. 61: 1771-1777.

Dundar, D. & Otkun, M. 2010. In vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Med. J. 51(1): 111-116.

Faizah, M.H., Anisah, N., Yusof, S., Noraina, A.R. & Adibah, M.R. 2017. Molecular detection of bacterial endosymbionts in Acanthamoeba spp.: A preliminary study. Med & Health Dec. 12(2): 286-292.

Farzana, A. & Shamsuzzaman, S.M. 2015. In vitro efficacy of synergistic antibiotic combinations in imipenem resistant Pseudomonas aeruginosa strains. Bangladesh J. Med. Microbiol. 9(1): 3-8.

Fujimura, S., Takane, H., Nakano, Y. & Watanabe, A. 2009. In vitro synergy studies based on tazobactam/piperacillin against clinical isolates of metallo-b-lactamase-producing Pseudomonas aeruginosa. J. Antimicrob. Chemother. 10: 1-2.

Gerceker, A.A. & Gurler, B. 1995. In vitro activities of various antibiotics, alone and in combination with amikacin against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 36: 707-711.

Giligan, P.H. 1995. Pseudomonas and Burlkholder. In Manual of Clinical Microbiology, 6th ed., edited by Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C. & Yolken, R.H. Washington, DC: ASM Press. pp. 509-519.

Goli, H.R., Nahaei, M.R., Rezaee, M.A., Hasani, A., Kafil, H.S. & Aghazadeh, M. 2016. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospital, Iran. Iran J. Microbiol. 8(1): 62-69.

Golle, A., Janezic, S. & Rupnik, M. 2017. Low overlap between carbapenem resistant Pseudomonas aeruginosa genotypes isolated from hospitalized patients and wastewater treatment plants. PloS ONE 12(10): e0186736.

Harris, A.D., Perencevich, E., Roghmann, M.C., Morris, G., Kaye, K.S. & Johnson, J.A. 2002. Risk factors for piperacillin-tazobactam-resistant Pseudomonas aeruginosa among hospitalized patients. Antimicrob. Agents Chemother. 46(3): 854-858.

Kang, C.I. & Song, J.H. 2013. Antimicrobial resistance in Asia: Current epidemiology and clinical implications. Infect. Chemother. 45(1): 22-31.

Kanj, S.S. & Kanafani, Z.A. 2011. Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo. Clin. Proc. 86(3): 250-259.

Laupland, K.B., Parkins, M.D., Church, D.L., Gregson, D.B., Louie, T.J., Conly, J.M., Elsayed, S. & Pitout, J.D.D. 2005. Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary health region: Importance of metallo-β-lactamase (MBL)-producing strains. J. Infect. Dis. 192(1): 1606-1612.

Leung, C.H., Wang, N.Y., Liu, C.P., Weng, L.C., Hsieh, F.C. & Lee, C.M. 2008. Antimicrobial therapy and control of multidrug-resistant Pseudomonas aeruginosa bacteremia in a teaching hospital in Taiwan. J. Microbiol. Immunol. Infect. 41: 491-498.

Lister, P.D., Wolter, D.J. & Hanson, N.D. 2009. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22(4): 582-610.

Memar, M.Y., Pormehrali, R., Alizadeh, N., Ghotaslou, R. & Baghi, H.B. 2016. Colistin, an option for treatment of multiple drug resistant Pseudomonas aeruginosa. Physiol. Pharmacol. 20: 130-136.

Moore, N.M. & Flaws, M.L. 2011. Treatment strategies and recommendations for Pseudomonas aeruginosa infections. Clin. Lab. Sci. 24(1): 52-56.

Nazli, E., Zer, Y. & Eksi, F. 2015. In vitro efficacy of various antibiotic combinations against Pseudomonas aeruginosa isolates. J. Int. Med. Res. 43(2): 217-225.

Pai, H., Kim, J.W., Kim, J., Lee, J.H., Choe, K.W. & Gotoh, N. 2001. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 45(2): 480-484.

Pankey, G.A. & Ashcraft, D.S. 2005. In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49(7): 2959-2964.

Patzer, J.A. & Dzierzanowska, D. 2007. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a Polish paediatric hospital (1993-2002). Int. J. Antimicrob. Agents 29: 153-158.

Sader, H.S., Huynh, H.K. & Jones, R.N. 2003. Contemporary in vitro synergy rates for aztreonam combined with newer fluoroquinolones and b-lactams tested against gram-negative bacilli. Diagn. Microbiol. Infect. Dis. 47: 547-550.

Sanal, L., Sen, S., Cesur, S. & Yilmaz, N. 2016. In vitro synergistic efficacy of various antibiotic combinations against multi-drug-resistant Pseudomonas aeruginosa isolates obtained from patients in intensive care units. Acta Medica. Mediterranea. 32: 1041-1046.

Soboh, F., Khoury, A.E., Zamboni, A.C., Davidson, D. & Mittelman, M.W. 1995. Effects of ciprofloxacin and protamine sulfate combinations against catheter associated Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 39(6): 1281-1286.

Song, M., Dilworth, T.J., Munson, E., Davis, J. & Elshaboury, R.H. 2017. Results of a local combination therapy antibiogram for Pseudomonas aeruginosa isolates: Is double worth the trouble? Ther. Adv. Infectious Dis. 4(6): 165-170.

Song, W., Woo, H.J., Kim, J.S. & Lee, K.M. 2003. In vitro activity of b-lactams in combination with other antimicrobial agents against resistant strains of Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 21: 8-12.

Sueke, H., Kaye, S.B., Neal, T., Hall, A., Tuft, S. & Parry, C.M. 2010. An in vitro investigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest. Ophthalmol. Vis. Sci. 51(8): 4151- 4155.

Tam, V.H., Chang, K.T., Abdelraouf, K., Brioso, C.G., Ameka, M., McCaskey, L.A., Weston, J.S., Caeiro, J.P. & Garey, K.W. 2010. Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 54(3): 1160- 1164.

Tausk, F., Evans, M.E., Patterson, L.S., Federspiel, C.F. & Stratton, C.W. 1985. Imipenem-induced resistance to antipseudomonal b-lactams in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 28(1): 41-45.

Tellis, R.C., Vidyasagar, S. & Moosabba, M.S. 2016. Activity of antibiotic combinations against multidrug resistant Pseudomonas aeruginosa: A study from South India. Int. J. Microbiol. Allied Sci. 2(4): 27-34.

Tolera, M., Abate, D., Dheresa, M. & Marami, D. 2018. Bacterial nosocomial infections and antimicrobial susceptibility pattern among patients admitted at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. Adv. Med. doi:10.1155/2018/2127814.

Vidaillac, C., Benichou, L. & Duval, R.E. 2012. In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob. Agents Chemother. 56(9): 4856-4861.

White, R.L., Burgess, D.S., Manduru, M. & Bosso, J.A. 1996. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 40(8): 1914-1918.

Wu, H., Moser, C., Wang, H.Z., Hoiby, N. & Song, Z.J. 2015. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 7: 1-7.

Yamaki, K.I., Tanaka, T., Takagi, K. & Ohta, M. 1998. Effects of aztreonam in combination with antipseudomonal antibiotics against Pseudomonas aeruginosa isolated from patients with chronic or recurrent lower respiratory tract infection. J. Infect. Chemother. 4: 50-55.

Yasmin, F., Akhtar, N. & Hameed, A. 2013. In vitro synergistic effect of ciprofloxacin with aminoglycosides against multidrug resistant-Pseudomonas aeruginosa. Pak. J. Pharm. Sci. 26(5): 1041-1044.

 

*Corresponding author; email: wanutsanun.t@psu.ac.th

 

 

 

 

previous