Sains Malaysiana 48(5)(2019): 1129–1135
http://dx.doi.org/10.17576/jsm-2019-4805-22
Peningkatan Kecekapan Pemisahan Air
Menggunakan g-C3N4 yang
Disinar Gama
(Improvement of Water Splitting Efficiency
using Gamma Irradiated g-C3N4)
NURUL AIDA
MOHAMED1,
JAVAD
SAFAEI1,
AZNAN
FAZLI
ISMAIL2,3,
MOHAMAD
FIRDAUS
MOHAMAD
NOH1,
MOHD
FAIRUZ
SOH1,
MOHD
ADIB
IBRAHIM1,
NORASIKIN
AHMAD
LUDIN1
& MOHD ASRI MAT
TERIDI1*
1Solar Energy Research Institute (SERI),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Nuclear Science Program, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Center for Frontier Science, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
3 July 2018/Accepted: 13 March 2019
ABSTRAK
Dalam kajian ini, kesan sinar
gama ke atas bahan semikonduktor g-C3N4 kGy
(0.1 kGy dan 0.5) dibincangkan dan dibandingkan dengan sampel
yang tidak disinar untuk melihat perbezaanya. Bahan g-C3N4 disintesis
dari urea melalui proses pempolimeran haba pada suhu 520°C.
Struktur dan morfologi g-C3N4 dianalisis dengan menggunakan pembelauan
Sinar- X (XRD), spektroskopi transformasi Fourier
inframerah (FT-IR), mikroskop pengimbas elektron pancaran medan dengan
spektroskopi tenaga sinar-X (FESEM-EDX), spektroskopi cahaya
nampak - ultraungu (UV-Vis) dan ketumpatan arus (LSV).
Sinar gama telah mengubah struktur ikatan g-C3N4 dan
mengurangkan sela jalur iaitu daripada 2.80 eV kepada 2.72 eV.
Di samping itu, sampel g-C3N4 yang disinar pada 0.1 kGy menghasilkan
prestasi lima kali ganda lebih tinggi iaitu daripada 3.59 μAcm-2
kepada 14.2 μAcm-2 pada 1.23 V lawan Ag/AgCl dalam larutan elektrolit 0.5
M Na2SO4 (pH7). Kesimpulannya, keputusan kajian
menunjukkan bahan semikonduktor yang dirawat dengan sinar gama
berpotensi untuk meningkatkan fotoelektrokimia (PEC)
pemisahan air.
Kata kunci: g-C3N4,
pemisahan air; sela jalur tenaga; sinar gama
ABSTRACT
In this study, the effect of
gamma radiation on g-C3N4 semiconductor
material (0.1 and 0.5 kGy) was discussed and compared to the
non-irradiated sample in order to investigate the difference.
The g-C3N4 material
was synthesised from urea by thermal polymerization at the temperature
of 520°C. The structure and morphology of the g-C3N4 were
analysed by X-ray diffractometer (XRD), Fourier transform infrared
spectroscopy (FTIR), field emission scanning electron
microscope with energy dispersive X-ray spectroscopy (FESEM-EDX),
ultraviolet- visible (UV-Vis), profilometer and photocurrent
density (LSV). The finding indicates that gamma radiation has changed
the bonding structure of the g-C3N4 and
reduces the optical band gap energy from 2.80 to 2.72 eV. In
addition, the irradiated g-C3N4 sample at 0.1 kGy has five times better
performance which increases from 3.59 μAcm-2
to 14.2 μAcm-2 at 1.23 V versus Ag/AgCl in 0.5 M Na2SO4 electrolyte
solution (pH7). As a conclusion, this study shows that the treated
semiconductor material with gamma-ray potentially to increase
the photoelectrochemical efficiency.
Keywords: g-C3N4;
energy band gap; gamma radiation; water splitting
REFERENCES
Ahmad,
S., Khan, M.S., Asokan, K. & Zulfequar, M. 2015. Effect
of gamma irradiation on structural and optical properties of
thin films of a Cd5Se95-xZnx.
Int. J. Thin. Fil. Sci. Tec. 4(2): 103-109.
Al-Hamdani,
N.A., Al-Alawy, R.D. & Saba, J.H. 2014. Effect of gamma
irradiation on the structural and optical properties of ZnO
thin films. IOSR Journal of Computer Engineering (IOSR-JCE)
16(1): 11-16.
Alarcón,
J., Ponce, S., Paraguay-Delgado, F. & Rodríguez, J. 2011.
Effect of γ-irradiation on the growth of ZnO nanorod films
for photocatalytic disinfection of contaminated water. Journal
of Colloid and Interface Science 364(1): 49-55.
Arshak,
K. & Kerostynska, O. 2003. Gamma irradiation induced changes
in the electrical and optical properties of tellurium dioxide
thin films. IEEE Sensors Journal 3(6): 717-721.
Chang,
Y., Guo, Q., Zhang, J., Chen, L., Long, Y. & Wan, F. 2013.
Irradiation effects on nanocrystalline material. Front. Mater.
Sci. 7(2): 143-155.
Dong,
F., Zhao, Z., Xiong, T., Ni, Z., Zhang, W., Sun, Y. & Ho,
W. 2013. In situ construction of G-C3N4 /g-C3N4
metal-free heterojunction for enhanced visible-light
photocatalysis. ACS Applied Materials & Interfaces 5(21):
11392-11401.
Fujishima,
A. & Honda, K. 1972. Electrochemical photolysis of water
at a semiconductor electrode. Nature 238: 37-38.
Huang,
S., Jin, Y. & Jia, M. 2013. Electrochimica acta preparation
of graphene/Co3O4
Composites by hydrothermal method and their electrochemical
properties. Electrochimica Acta 95: 139-145.
Jin,
A., Jia, Y., Chen, C., Liu, X., Jiang, J., Chen, X. & Zhang,
Z. 2017. Efficient photocatalytic hydrogen evolution on band
structure tuned polytriazine/heptazine based carbon nitride
heterojunctions with ordered needle-like morphology achieved
by an in situ molten salt method. Journal of Physical
Chemistry C 121(39): 21497-21509.
Li, Q.,
He, Y. & Peng, R. 2013. Graphitic carbon nitride (G-C3N4)
as a metal-free catalyst for thermal decomposition of ammonium
perchlorate. RSC Adv. 5(31): 24507-24512.
Liu, J., Zhang, T., Wang,
Z., Dawson, G. & Chen, W. 2011. Simple pyrolysis of urea
into graphitic carbon nitride with recyclable adsorption and
photocatalytic activity. Journal of Materials Chemistry 21(38):
14398-14401.
Mohd-Nasir, S.N.F., Ebadi, M., Sagu,
J.S., Sulaiman, M.Y., Ludin, N.A., Ibrahim, M.A. & Teridi,
M.A.M. 2015. Influence of ethylene glycol on efficient photoelectrochemical
activity of BiVO4 photoanode via AACVD. Physica Status Solidi
(A) Applications and Materials Science 212(12): 2910-2914.
Mohamed, N.A., Safaei, J., Aznan,
F.I., Mohamad Noh, M.F., Soh, M.F., Ibrahim, M.A., Ahmad Ludin,
N. & Mat Teridi, M.A. 2018. Efficient photoelectrochemical
performance of gamma irradiated g-C3N4 and its g-C3N4 @BiVO4
heterojunction for solar water splitting. J. Phys. Chem.
C. 123(14): 9013-9026.
Mohil, M. & Kumar, G.A. 2013.
Gamma radiation induced effects in TeO2 thin films. Journal
of Nano and Electronic Physics 5(2): 5-7.
Peng, D., Wang, H., Yu, K., Chang,
Y., Ma, X. & Dong, S. 2016. Photochemical preparation of
the ternary composite CdS/Au/g-C3N4 with enhanced visible light
photocatalytic performance and its microstructure. RSC Advances
6(81): 77760-77767.
Riyadh, C.H.A., Hussein, H.F. &
Al-Fregi, A.A. 2012. The effects of gamma irradiation on the
absorption spectra and optical energy gap of selenium dioxide
thin films. Science Journal of Physics 2012(2): 1-4.
Safaei, J., Ullah, H., Mohamed, N.A.,
Noh, M.F.M., Soh, M.F., Tahir, A.A., Ludin, N.A., Ibrahim, M.A.,
Wan Isahak, W.N.R. & Mat Teridi, M.A. 2018. Enhanced photoelectrochemical
performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Applied
Catalysis B: Environmental 234: 296-310.
Wang, X., Blechert, S. & Antonietti,
M. 2012. Polymeric graphitic carbon nitride for heterogeneous
photocatalysis. ACS Catalysis 2: 1596-1606.
Yang, P., Zhao, J., Qiao, W., Li,
L. & Zhu, Z. 2015. Ammonia-induced robust photocatalytic
hydrogen evolution of graphitic carbon nitride. Nanoscale
7(45): 18887-18890.
Yu, J., Wang, S., Cheng, B., Lin,
Z. & Huang, F. 2013. Noble metal-free Ni(OH)2–g-C3N4 composite
photocatalyst with enhanced visible-light photocatalytic H2
production activity. Catalysis Science & Technology 3(7):
1782-1789.
Zhang, G., Zhang, J., Zhang, M. &
Wang, X. 2012. Polycondensation of thiourea into carbon nitride
semiconductors as visible light photocatalysts. Journal of
Materials Chemistry 22(16): 8083-8091.
Zhang, J., Chen, X., Takanabe, K.,
Maeda, K., Domen, K., Epping, J.D., Fu, X., Antonieta, M. &
Wang, X. 2010. Synthesis of a carbon nitride structure for visible-light
catalysis by copolymerization. Angewandte Chemie-International
Edition 49(2): 441-444.
Zhang, L., Jing, D., She, X., Liu,
H., Yang, D., Lu, Y., Li, J., Zheng, Z. & Guo, L. 2014.
Heterojunctions in G-C3N4/ TiO2 (B) nanofibres with exposed
(001) plane and enhanced visible-light photoactivity. J.
Mater. Chem. A 2(7): 2071- 2078.
Zhong, D.K.N. 2012. Solar water oxidation
by composite cobalt-based catalyst/oxide semiconductor photoanode.
Thesis Dr. Fal. University Washington (tidak diterbitkan).
*Corresponding author;
email: asri@ukm.edu.my