Sains Malaysiana 48(5)(2019): 937–944
http://dx.doi.org/10.17576/jsm-2019-4805-02
Effects of Silver Nanoparticle Exposure
on Germination and Early Growth of Pinus
sylvestris and Alnus
subcordata
(Kesan Pendedahan Nanozarah Perak kepada Percambahan dan Pertumbuhan Awal Pinus sylvestris dan Alnus subcordata)
VILMA BAYRAMZADEH1*,
MARYAM GHADIRI2
& MOHAMMAD HOSSEIN DAVOODI3
1Department of Wood
Sciences Faculty of Agricultural Sciences and Natural Resources,
Karaj Branch, Islamic Azad University, Karaj, Iran
2M.Sc. Department
of Soil Sciences, Faculty of Agricultural Sciences and Natural
Resources, Karaj Branch, Islamic Azad University, Karaj, Iran
3Soil and Water
Research Institute, Karaj, Iran
Received: 9 June 2018/Accepted:
12 March 2019
ABSTRACT
The possible ecological toxicity
of silver nanoparticles (AgNP) was
evaluated based on germination and growth characteristics of
Pinus sylvestris and Alnus
subcordata. Seeds were exposed
to different concentrations of AgNP
in soil (0, 10, 20, 40, 80 and 100 mg/kg) and aqueous suspension
(0, 10 and 20 mg/L). Then, seed germination percentage (GP%),
speed of germination (S.G), seedling length (SL),
as well as fresh and dry weights (FW and DW)
were measured. The results showed that low concentration of
AgNP (under 80 mg/kg) could be used
without detrimental effects on the germination characteristics
of P. sylvestris in the soil.
Nevertheless, inhibitory effect of AgNP
was observed at 10 mg/L for P. sylvestris
in aqueous suspension. The dissimilar results in soil and
aqueous suspension were due to the organic matters and clay
minerals in the soil. There was no significant difference (p<0.01)
among the treatments of A. subcordata, not only in soil but also in the aqueous suspension.
Keywords: Aqueous suspension;
inhibitory effect; seed germination; silver nanoparticles; soil;
woody plants
ABSTRAK
Ketoksikan ekologi nanozarah perak (AgNP) dinilai
berdasarkan ciri-ciri
percambahan dan pertumbuhan Pinus sylvestris dan Alnus subcordata. Benih didedahkan kepada kepekatan berbeza AgNP dalam
tanah (0, 10, 20, 40, 80 dan
100 mg/kg) dan gantungan
akues (0, 10 dan 20 mg/L). Kemudian, peratusan percambahan biji benih (GP%), kelajuan percambahan (S.G), panjang semaian (SL), serta
berat kering
dan segar (FW dan DW) diukur.
Hasil kajian menunjukkan
bahawa kepekatan
rendah AgNP (di bawah 80 mg/kg) boleh digunakan tanpa kesan-kesan yang memudaratkan terhadap ciri-ciri percambahan P. sylvestris dalam tanah. Walau bagaimanapun, kesan rencatan AgNP diperhatikan pada 10 mg/L bagi P. sylvestris pada penggantungan akues. Keputusan yang berbeza dalam tanah dan
penggantungan akues
adalah disebabkan oleh bahan organik
dan mineral tanah
liat dalam tanah.
Tiada perbezaan
yang signifikan (p<0.01) bagi
rawatan A. subcordata,
di dalam tanah
mahupun di dalam penggantungan akues.
Kata kunci: Kesan
rencatan; penggantungan
akues; percambahan benih; nanozarah perak; tanah; tumbuhan
berkayu
REFERENCES
Association
of Official Seed Analysts. 1970. Rules for testing seed. Association
Seed Analysts 60: 1-116.
Bayramzadeh, V., Funada,
R. & Kubo, T. 2008. Relationships between vessel element
anatomy and physiological as well as morphological traits of
leaves in Fagus crenata seedlings originating from different provenances.
Trees 22(2): 217-224.
Brant,
J.A., Labille, J., Bottero,
J.Y. & Wiesner, M.R. 2007. Nanoparticle
transport, aggregation and deposition. In Environmental Nanotechnology,
Applications and Impacts of Nanomaterials, edited by Wiesner,
M.R. & Bottero, J.Y. New York:
McGraw. pp. 231-294.
Christian,
P., von der Kammer, F., Baalousha,
M. & Hofmann, T.H. 2008. Nanoparticles structure, properties,
preparation and behavior in environmental media. Ecotoxicology
17(5): 326-343.
El-Temsah, Y.S. & Joner, E. 2010.
Impact of Fe and Ag nanoparticles on seed germination and differences
in bioavailability during exposure in aqueous suspension and
soil. Environmental Toxicology 27(1): 42-49.
EPA.
2007. Nanotechnology White Paper. Washington: U.S. Environmental
protection agency report EPA 100/B-07/001.
Gee,
G.W. & Bauder, J.W. 1986. Particle
size analysis. In Methods of Soil Analysis, edited by
Klute, A. Wisconsin: Soil Science
Society of America, Madison. pp. 383-411.
Gharachorlou, A., Kiadalivi,
H., Adeli, E. & Alijanpoor,
A. 2010. Studying quantity and quality of coniferous species
in Arasbaran Forests (Case study: Heresar
and Kalaleh Regions). World Applied
Sciences Journal 8: 334-338.
Handy,
R.D. & Shaw, B.J. 2007. Toxic effects of nanoparticles and
nanomaterials: Implications for public health, risk assessment
and the public perception of nanotechnology. Health, Risk
and Society 9(2): 125-144.
Hwang,
M.G., Katayama, H. & Ohgaki, S.
2007. Inactivation of Legionella pneumophila
and Pseudomonas aeruginosa: Evaluation of the bactericidal
ability of silver actions. Water Research 41(18): 4097-4104.
International
Seed Testing Association. 1976. International rules for seed
testing 1976. Seed Science and Technology 4: 1-177.
Jiang,
H., Li, M., Chang, F., Li, W. & Yin, L. 2012. Physiological
analysis of silver nanoparticles and AgNO3 toxicity to Spirodela
polyrrhiza. Environmental Toxicology
and Chemistry 31(8): 1880-1996.
Klaine,
S.J., Alvarez, P.J., Batley, G.E.,
Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. & Lead, J.R. 2008. Nanomaterials
in the environment: Behaviour, fate,
bioavailability and effects. Environmental Toxicology and
Chemistry 27(9): 1825-1851.
Kumari, M., Mukherjee, A. & Chandrasekaran, N. 2009. Genotoxicity of silver nanoparticle
in Allium cepa. Science
of the Total Environment 407(19): 5243-5246.
Lee,
W.M., Kwak, J.I. & An, Y.J. 2012.
Effect of silver nanoparticles in crop plants Phaseolus
radiates and Sorghum bicolour:
Media effect on phytotoxicity. Chemosphere
86(5): 491-499.
Limbach, L.K., Wick, P., Manser,
P., Grass, R.N., Bruinink, A. &
Stark, W.J. 2007. Exposure of engineered nanoparticles to human
lung epithelial cells: Influence of chemical composition and
catalytic activity on oxidative stress. Environmental Science
and Technology 41(11): 4158-4163.
Lin,
D. & Xing, B. 2007. Phytotoxicity
of nanoparticles: Inhibition of seed germination and root growth.
Environmental Pollution 150(2): 243-250.
Lombi, E., Zhao, F.J., Zhan, G., Sun, B., Fitz, W., Zhang, H. & McGrath,
S.P. 2002. In situ fixation of metals in soils using
bauxite residue: Chemical assessment. Environmental Pollution
118(3): 435-443.
Luoma, N.S. 2008. Silver nanotechnologies and the environment: Old problems
or new challenges? Woodrow Wilson International Centre for Scholars:
Scholars Project on Emerging Nanotechnologies, Washington, DC.
p. 26.
Maguire,
J.O. 1962. Speed of germination-aid in selection and evaluation
for seedling emergence and vigour.
Crop Science 2(1): 176-177.
Maynard,
A.D., Aitken, R.J., Butz, T., Colvin,
V., Donaldson, K., Oberdörster, G.,
Philbert, M. A., Ryan, J., Seaton,
A., Stone, V., Tinkle, S.S., Tran, L., Walker, N.J. & Warheit,
D.B. 2006. Safe handling of nano technology. Nature 444(7117): 267-269.
Munzuroglu, O. & Geckil,
H. 2002. Effects of metals on seed germination, root elongation,
and coleoptile and hypocotyl growth in Triticum
aestivum and Cucumis
sativus. Arch Environmental
Contamination and Toxicology 43(2): 203- 213.
Navarro, E., Boun, A., Behra, R., Hartmann, N.B.,
Filser, J., Mioo,
A.O., Quigg, A., Santschi,
P.H. & Sigg, L. 2008. Environmental
behaviour and ecotoxicity of engineered
nanoparticles on algae, plants and fungi. Ecotoxicology 17(5):
372-386.
Purcell, T.W. & Peter, J.J. 1998. Sources of silver in the
environmental. Environmental Toxicology and Chemistry 17(4):
539-546.
Roberts, A.P.,
Mount, A.S., Seda, B., Souther,
J., Qiao, R., Lin, S., Ke,
P.C., Rao, A.M. & Klaines, J.
2007. In vivo bio-modification of lipid-coated carbon
nano-tubes by Daphnia magna.
Environmental Science and Technology 41(8): 3025-3029.
Richards, L.A.
1954. Diagnosis and improvement of saline and alkali soils.
Agronomy Journal 60: 65-86.
Roschewitz, I., Gabriel,
D., Tscharntke, T. & Thies,
C. 2005. The effects of landscape complexity on arable weed
diversity in organic and conventional farming. Journal of
Applied Ecology 42(5): 873-882.
Seeger, E., Baun, A., Kastner, M. & Trapp,
S. 2009. Insignificant acute toxicity of TiO2
nanoparticles to willow trees. Journal of Soils and
Sediments 9(1): 46-53.
Stampoulis, D., Sinha, S.K.
& White, J.C. 2009. Assay-dependent phytotoxicity
of nanoparticles to plant. Environmental Science and Technology
43(24): 9473-9479.
Steven, H.M. &
Carlisle, A. 1959. The Native Pinewoods of Scotland.
Edinburgh: Oliver and Boyd Publications. p. 368.
Tabari, M., Salehi, A. & Ali-Arab, A.R. 2008. Effects of waste water
application on heavy metals (Mn, Fe,
Cr and Cd) contamination in a black locust stand in semi-arid
zone of Iran. Research Journal of Environmental Sciences
7(4): 382-388.
Tabari, M., Rostamabadi, A. & Salehi, A.
2011. Comparison of plant diversity and stand characteristics
in Alnus subcordata C.A.
Mey and Taxodium
distichum (L.) L.C. Rich. Ecologia
Balkanica 3(2): 15-24.
Walkley, A. & Black,
I.E. 1934. An examination of the degtjareff
method for three determining soil organic mother and a proposed
modification of the chromic acid titration method. Soil Science
37(1): 29-38.
Wang, X.D., Sun,
C., Gao, S.X., Wang, L.S. & Han, S.K. 2001. Validation of
germination rate and root elongation as indicator to assess
phytotoxicity with Cucumis
sativus. Chemosphere 44(8):
1711-1721.
Wiesner, M.R., Lowry,
G.V., Alvarez, P., Dionysiou, D. &
Biswas, P. 2006. Assessing the risks of manufactured nanomaterials.
Environmental Science and Technology 40(14): 4336-4345.
Yin, L., Cheng,
Y., Espinasse, B., Colman, B.P., Auffan,
M. & Wiesner, M. 2011. More than
the ions: The effects of silver nanoparticles on Lolium
multiflorum. Environmental Science and Technology 45(6):
2360-2367.
*Corresponding author; email: vbayramzadeh@gmail.com