Sains Malaysiana 48(5)(2019): 945–963

http://dx.doi.org/10.17576/jsm-2019-4805-03

 

Characterization of a Proposed Quarry Site using Multi-Electrode Electrical Resistivity Tomography

(Pencirian Tapak Cadangan Kuari Menggunakan Tomografi Keberintangan Elektrik Multi-Elektrod)

 

JOHN STEPHEN KAYODE1, MOHD HARIRI ARIFIN2* & MOHD NAWAWI3

 

1Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

 

2Department of Geology, School of Environmental and Natural Resources Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Geophysics Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

 

Received: 23 April 2018/Accepted: 22 February 2019

 

ABSTRACT

This research focuses on the delineation of subsurface basement granitic structures suitable for engineering construction materials for the sitting of quarry industry in the area. The key objective of the study was to locate and delineate the depths of burial to the subsurface granite rock bodies and the regolith thickness overlain the bedrock unit. 14 resistivity profile lines with a surveyed length of 200 m and electrode spacing of 5 m, were carried out with the application of electrical resistivity tomography software, to image the subsurface structural units around this area, utilizing pole-dipole electrode configurations method towards assisting the Engineers in obtaining information on the subsurface geological features in this part of the Peninsula Malaysia. The focus is on characterizing engineering construction materials suitable for sitting the quarry industry, determination of the longitudinal conductance and coefficient of anisotropy of subsurface lithological units that determines the competency of the bedrock underneath the area from the geoelectric parameters obtained through the interpretations of the RES2DINV ERT images. The depth of bedrock unit as delineated from the results ranged from about 5 m to 100 m while the resistivity values recorded was greater than 6000 Ω-m in most of the profiles. Groundwater bearing channels that would serve the factory needs was delineated alongside the granitic rock unit. These results make the subsurface granitic bedrock unit to be adjudged competent and suitable enough as quarry construction materials for sitting the factory in the area.

 

Keywords: Competency of bedrock; electrical resistivity tomography; quarry site; rocks anisotropy parameters

 

ABSTRAK

Penyelidikan ini memberi tumpuan kepada penentuan struktur granit bawah tanah yang sesuai untuk bahan binaan kejuruteraan bagi penempatan industri kuari di kawasan tersebut. Objektif utama kajian ini adalah untuk mencari dan menentukan kedalaman jasad batuan granit yang tertimbus dan ketebalan unit batuan dasar regolith. 14 garis profil keberintangan dengan panjang 200 m dan jarak elektrod 5 m, telah dijalankan dengan menggunakan perisian tomografi keberintangan elektrik (RES2DINV) untuk menggambarkan unit-unit struktur bawah permukaan di sekitar kawasan ini, menggunakan susunatur elektrod kutub-dwikutub dengan bantuan jurutera dalam mendapatkan maklumat mengenai ciri geologi bawah permukaan di kawasan Semenanjung Malaysia. Tumpuannya adalah untuk mencirikan kesesuaian bahan binaan kejuruteraan untuk penempatan industri kuari, penentuan konduktan membujur dan pekali anisotropi unit litologi bawah permukaan yang menentukan kebolehgunaan batuan dasar di bawah kawasan kajian daripada parameter geoelektrik yang diperoleh melalui tafsiran imej RES2DINV ERT. Kedalaman batuan dasar yang telah ditentukan daripada hasil tersebut adalah berjulat sekitar 5 m hingga 100 m dengan nilai bacaan keberintangan yang direkodkan adalah lebih besar daripada 6000 Ω-m pada kebanyakan profil. Laluan yang mengandungi air bawah tanah yang boleh membekalkan keperluan kepada kilang telah ditentukan di sepanjang unit batuan granit. Keputusan ini menjadikan unit batuan granit sesuai dan layak digunakan sebagai bahan binaan kilang di kawasan tersebut.

 

Kata kunci: Kecekapan batuan dasar; parameter anisotropi batuan; tapak kuari; tomografi keberintangan elektrik

REFERENCES

Abidin, M.H.Z., Saad, R., Wijeyesekera, D.C., Ahmad, F., Baharuddin, M.F.T., Tajudin, S.A.A. & Madun, A. 2017. The influences of basic physical properties of clayey silt and silty sand on its laboratory electrical resistivity value in loose and dense conditions. Sains Malaysiana 46(10): 1959-1969.

Amadei, B. 2012. Rock Anisotropy and the Theory of Stress Measurements. Germany: Springer Science & Business Media.

Azman, A.G., Borhan, M.D. & Teh, G.H. 2000. Age, petrochemistry and modelling of the Bukit Mertajam-Kulim granite, Northwest Peninsular Malaysia. Bulletin of the Geological Society of Malaysia 44: 139-150.

Baines, D., Smith, D.G., Froese, D.G., Bauman, P. & Nimeck, G. 2002. Electrical resistivity ground imaging (ERGI): A new tool for mapping the lithology and geometry of channel-belts and valley-fills. Sedimentology 49: 441-449.

Balasubramanian, A., Sharma, K.K. & Sastri, J.C.V. 1985. Geoelectrical and hydrogeochemical evaluation of coastal aquifers of Tambraparni basin, Tamil Nadu. Geophysical Research Bulleting 23: 203-209.

Berge, M.A. 2014. Electrical resistivity tomography investigations on a paleoseismological trenching study. Journal of Applied Geophysics 109: 162-174.

Chambers, J., Wilkinson, P., Weller, A., Meldrum, P., Kuras, O., Ogilvy, R., Aumonier, J., Bailey, E., Griffiths, N. & Matthews, B. 2012. Characterising sand and gravel deposits using electrical resistivity tomography (ERT): Case histories from England and Wales. In Proceedings of the 16th Extractive Industry Geology Conference, edited by Hunger, E. & Walton, G. pp. 166-172.

Chandra, S., Ahmed, S., Ram, A. & Dewandel, B. 2008. Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: A theoretical development with field application. Journal of Hydrology 357: 218-227.

Cheng, K.S., Simske, S.J., Isaacson, D., Newell, J. & Gisser, D. 1990. Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. Biomedical Engineering, IEEE Transactions 37: 60-65.

Chung, K.W., Leman, M.S., Dzulkafli, M.A., Mohamed, K.R., Ali, C.A. & Ab Talib, J. 2017. Gagau group (early cretaceous) sedimentary rock deposited at Sungai Chichir upstream, Terengganu Darul Iman, Malaysia. Sains Malaysiana 46(12): 2315-2323.

Cobbing, J. 2000. The Geology and Mapping of Granite Batholiths. Heidelberg, Germany: Springer.

Ghani, A.A., Doya, B.M. & Teh, G. 2000. Age, petrochemistry and modelling of the Bukit Mertajam-Kulim granite, Northwest Peninsular Malaysia. Bull. Geol. Soc. Malaysia 44: 129-150.

Gobbett, D.J. & Hutchison, C.S. 1973. Geology of the Malay Peninsula: West Malaysia and Singapore. New York: John Wiley & Sons.

Gonzaga, G., Leite, M. & Corthésy, R. 2008. Determination of anisotropic deformability parameters from a single standard rock specimen. International Journal of Rock Mechanics and Mining Sciences 45: 1420-1438.

Haile, N. 1980. Palaeomagnetic evidence from the Ordovician and Silurian of Northwest Peninsular Malaysia. Earth and Planetary Science Letters 48: 233-236.

Hakala, M., Kuula, H. & Hudson, J. 2007. Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: A case study of the Olkiluoto mica gneiss, Finland. International Journal of Rock Mechanics and Mining Sciences 44: 14-46.

Jasin, B. 2008. Some Permian radiolarians from Bukit Yoi, Pokok Sena, Kedah. Bulletin of the Geological Society of Malaysia 54: 53-58.

JMG 2014. Geological Map of Peninsula Malaysia. Kuala Lumpur: JMG.

Kearey, P., Brooks, M. & Hill, I. 2002. An Introduction to Geophysical Exploration. Oxford: Blackwell Science Ltd.

Khoo, T.T. & Tan, B.K. 1983. Geological evolution of Peninsular Malaysia. In Proceedings of the Workshop on Stratigraphic Correlation of Thailand and Malaysia 1: 253-290.

Kneisel, C. 2006. Assessment of subsurface lithology in mountain environments using 2D resistivity imaging. Geomorphology 80: 32-44.

Loke, M., Chambers, J., Rucker, D., Kuras, O. & Wilkinson, P. 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics 95: 135-156.

Loke, M.H. 2014. 2-day workshop on 2D and 3D electrical resisitivity imaging surveys. Universiti Sains Malaysia.

Loke, M., Wilkinson, P., Uhlemann, S., Chambers, J. & Oxby, L. 2014. Computation of optimized arrays for 3-D electrical imaging surveys. Geophysical Journal International 199: 1751-1764.

Loke, M., Wilkinson, P., Tejero-Andrade, A. & Kruse, S. 2015. Optimized arrays for resistivity measurements confined to the perimeter of a survey area. Near Surface Geoscience 2015- 21st European Meeting of Environmental and Engineering Geophysics 10.3997/2214-4609.201413793.

Mallik, S., Bhattacharya, D. & Nag, S. 1983. Behaviour of fractures in hard rocks-A study by surface geology and radial VES method. Geoexploration 21: 181-189.

Mohamad, H. & Roslan, N. 2017. Characterization of aquifer properties in granite in Selangor. Sains Malaysiana 46(12): 2331-2338.

Nunes, A.L.L. 2002. A new method for determination of transverse isotropic orientation and the associated elastic parameters for intact rock. International Journal of Rock Mechanics and Mining Sciences 39: 257-273.

Panek, T., Hradecký, J. & Silhan, K. 2008. Application of electrical resistivity tomography (ERT) in the study of various types of slope deformations in anisotropic bedrock: Case studies from the Flysch Carpathians. Studia Geomorphologica Carpatho- Balcanica 32: 57-73.

Panissod, C., Michel, D., Hesse, A., Joivet, A., Tabbagh, J. & Tabbagh, A. 1998. Recent developments in shallow-depth electrical and electrostatic prospecting using mobile arrays. Geophysics 63: 1542-1550.

Ringstad, A.C., Ringstad, C.M. & Ringstad, M.L. 2000. 2D electrical resistivity in a complex geology environment. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. pp. 1113-1115.

Rucker, D.F., Loke, M.H., Levitt, M.T. & Noonan, G.E. 2010. Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics 75: WA95-WA104.

Soupios, P., Georgakopoulos, P., Papadopoulos, N., Saltas, V., Andreadakis, A., Vallianatos, F., Sarris, A. & Makris, J. 2007. Use of engineering geophysics to investigate a site for a building foundation. Journal of Geophysics and Engineering 4(1): 94-103.

Stan, D. & Stan-Kłeczek, I. 2014. Application of electrical resistivity tomography to map lithological differences and subsurface structures (Eastern Sudetes, Czech Republic). Geomorphology 221: 113-123

Sudha, K., Israil, M., Mittal, S. & Rai, J. 2009. Soil characterization using electrical resistivity tomography and geotechnical investigations. Journal of Applied Geophysics 67: 74-79.

Van Heerden, W. 1983. Stress-stain relations applicable to overcoring techniques in transversely isotropic rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics 20(6): 277-282.

Wilkinson, P., Loke, M., Chambers, J. & Oxby, L.S. 2013. Computation of optimized arrays for 3-D electrical imaging surveys. Geophysical Journal International 199(3): 1751- 1764.

Worotnicki, G. 2014. CSIRO triaxial stress measurement cell. Comprehensive Rock Engineering 3: 329-394.

Zhu, T., Feng, R., Hao, J.Q., Zhou, J.G., Wang, H.L. & Wang, S.Q. 2009. The application of electrical resistivity tomography to detecting a buried fault: A case study. Journal of Environmental & Engineering Geophysics 14: 145-151.

 

*Corresponding author; email: hariri@ukm.edu.my

 

 

 

previous