Sains Malaysiana 48(5)(2019): 945–963
http://dx.doi.org/10.17576/jsm-2019-4805-03
Characterization of a Proposed Quarry
Site using Multi-Electrode Electrical Resistivity Tomography
(Pencirian Tapak Cadangan Kuari Menggunakan Tomografi Keberintangan Elektrik Multi-Elektrod)
JOHN STEPHEN KAYODE1,
MOHD HARIRI
ARIFIN2* & MOHD NAWAWI3
1Environmental Technology, School of
Industrial Technology, Universiti
Sains Malaysia, 11800 USM, Pulau
Pinang, Malaysia
2Department of Geology, School of Environmental
and Natural Resources Sciences, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Geophysics Unit, School of Physics,
Universiti Sains
Malaysia, 11800 USM, Pulau Pinang,
Malaysia
Received:
23 April 2018/Accepted: 22 February 2019
ABSTRACT
This research focuses on the
delineation of subsurface basement granitic structures suitable
for engineering construction materials for the sitting of quarry
industry in the area. The key objective of the study was to
locate and delineate the depths of burial to the subsurface
granite rock bodies and the regolith thickness overlain the
bedrock unit. 14 resistivity profile lines with a surveyed length
of 200 m and electrode spacing of 5 m, were carried out with
the application of electrical resistivity tomography software,
to image the subsurface structural units around this area, utilizing
pole-dipole electrode configurations method towards assisting
the Engineers in obtaining information on the subsurface geological
features in this part of the Peninsula Malaysia. The focus is
on characterizing engineering construction materials suitable
for sitting the quarry industry, determination of the longitudinal
conductance and coefficient of anisotropy of subsurface lithological
units that determines the competency of the bedrock underneath
the area from the geoelectric parameters
obtained through the interpretations of the RES2DINV ERT images.
The depth of bedrock unit as delineated from the results ranged
from about 5 m to 100 m while the resistivity values recorded
was greater than 6000 Ω-m in most of the profiles. Groundwater
bearing channels that would serve the factory needs was delineated
alongside the granitic rock unit. These results make the subsurface
granitic bedrock unit to be adjudged competent and suitable
enough as quarry construction materials for sitting the factory
in the area.
Keywords: Competency of bedrock;
electrical resistivity tomography; quarry site; rocks anisotropy
parameters
ABSTRAK
Penyelidikan ini memberi tumpuan
kepada penentuan
struktur granit bawah tanah yang sesuai untuk bahan
binaan kejuruteraan
bagi penempatan industri kuari di kawasan tersebut. Objektif utama kajian ini adalah
untuk mencari
dan menentukan kedalaman jasad batuan granit yang tertimbus dan ketebalan
unit batuan dasar
regolith. 14 garis profil
keberintangan dengan panjang 200 m dan jarak elektrod 5 m, telah dijalankan dengan menggunakan perisian tomografi keberintangan elektrik (RES2DINV) untuk menggambarkan unit-unit struktur bawah permukaan di sekitar kawasan ini, menggunakan
susunatur elektrod
kutub-dwikutub dengan bantuan jurutera dalam mendapatkan maklumat mengenai ciri geologi bawah
permukaan di kawasan
Semenanjung Malaysia. Tumpuannya
adalah untuk mencirikan
kesesuaian bahan
binaan kejuruteraan untuk penempatan industri kuari, penentuan konduktan membujur dan pekali
anisotropi unit litologi
bawah permukaan yang menentukan kebolehgunaan batuan dasar di bawah kawasan kajian
daripada parameter geoelektrik
yang diperoleh melalui
tafsiran imej RES2DINV
ERT. Kedalaman batuan
dasar yang telah
ditentukan daripada hasil tersebut adalah berjulat sekitar 5 m hingga 100 m dengan nilai bacaan
keberintangan yang direkodkan
adalah lebih
besar daripada 6000 Ω-m pada kebanyakan profil. Laluan yang mengandungi air bawah tanah yang boleh membekalkan keperluan kepada kilang telah
ditentukan di sepanjang
unit batuan granit.
Keputusan ini menjadikan
unit batuan granit
sesuai dan layak
digunakan sebagai
bahan binaan kilang
di kawasan tersebut.
Kata kunci: Kecekapan
batuan dasar;
parameter anisotropi batuan; tapak kuari; tomografi
keberintangan elektrik
REFERENCES
Abidin, M.H.Z., Saad,
R., Wijeyesekera, D.C., Ahmad, F.,
Baharuddin, M.F.T., Tajudin, S.A.A.
& Madun, A. 2017. The influences
of basic physical properties of clayey silt and silty sand on
its laboratory electrical resistivity value in loose and dense
conditions. Sains Malaysiana
46(10): 1959-1969.
Amadei, B. 2012. Rock Anisotropy and the Theory
of Stress Measurements. Germany: Springer Science &
Business Media.
Azman, A.G., Borhan, M.D. & Teh, G.H. 2000. Age, petrochemistry
and modelling of the Bukit Mertajam-Kulim
granite, Northwest Peninsular Malaysia. Bulletin of the Geological
Society of Malaysia 44: 139-150.
Baines,
D., Smith, D.G., Froese, D.G., Bauman, P. & Nimeck,
G. 2002. Electrical resistivity ground imaging (ERGI): A new
tool for mapping the lithology and geometry of channel-belts
and valley-fills. Sedimentology 49: 441-449.
Balasubramanian, A., Sharma, K.K. & Sastri, J.C.V. 1985. Geoelectrical
and hydrogeochemical evaluation of
coastal aquifers of Tambraparni basin,
Tamil Nadu. Geophysical Research Bulleting 23: 203-209.
Berge,
M.A. 2014. Electrical resistivity tomography investigations
on a paleoseismological trenching study. Journal of Applied
Geophysics 109: 162-174.
Chambers,
J., Wilkinson, P., Weller, A., Meldrum, P., Kuras,
O., Ogilvy, R., Aumonier, J., Bailey,
E., Griffiths, N. & Matthews, B. 2012. Characterising
sand and gravel deposits using electrical resistivity tomography
(ERT): Case histories from England and Wales. In Proceedings
of the 16th Extractive Industry Geology Conference, edited
by Hunger, E. & Walton, G. pp. 166-172.
Chandra,
S., Ahmed, S., Ram, A. & Dewandel,
B. 2008. Estimation of hard rock aquifers hydraulic conductivity
from geoelectrical measurements: A theoretical development with
field application. Journal of Hydrology 357: 218-227.
Cheng,
K.S., Simske, S.J., Isaacson, D.,
Newell, J. & Gisser, D. 1990. Errors due to measuring voltage on current-carrying
electrodes in electric current computed tomography. Biomedical
Engineering, IEEE Transactions 37: 60-65.
Chung,
K.W., Leman, M.S., Dzulkafli, M.A.,
Mohamed, K.R., Ali, C.A. & Ab Talib,
J. 2017. Gagau group (early cretaceous) sedimentary rock deposited
at Sungai Chichir upstream, Terengganu
Darul Iman, Malaysia. Sains Malaysiana 46(12):
2315-2323.
Cobbing, J. 2000. The Geology and Mapping of
Granite Batholiths. Heidelberg, Germany: Springer.
Ghani,
A.A., Doya, B.M. & Teh,
G. 2000. Age, petrochemistry and modelling
of the Bukit Mertajam-Kulim granite,
Northwest Peninsular Malaysia. Bull. Geol. Soc. Malaysia
44: 129-150.
Gobbett, D.J. & Hutchison, C.S. 1973. Geology
of the Malay Peninsula: West Malaysia and Singapore. New
York: John Wiley & Sons.
Gonzaga,
G., Leite, M. & Corthésy,
R. 2008. Determination of anisotropic deformability parameters
from a single standard rock specimen. International Journal
of Rock Mechanics and Mining Sciences 45: 1420-1438.
Haile,
N. 1980. Palaeomagnetic evidence from
the Ordovician and Silurian of Northwest Peninsular Malaysia.
Earth and Planetary Science Letters 48: 233-236.
Hakala, M., Kuula, H.
& Hudson, J. 2007. Estimating the transversely isotropic
elastic intact rock properties for in situ stress measurement
data reduction: A case study of the Olkiluoto
mica gneiss, Finland. International Journal of Rock Mechanics
and Mining Sciences 44: 14-46.
Jasin, B. 2008. Some Permian radiolarians from Bukit Yoi, Pokok Sena,
Kedah. Bulletin of the Geological Society of Malaysia 54:
53-58.
JMG 2014.
Geological Map of Peninsula Malaysia. Kuala Lumpur: JMG.
Kearey, P., Brooks, M. & Hill, I. 2002. An
Introduction to Geophysical Exploration. Oxford: Blackwell
Science Ltd.
Khoo, T.T. & Tan, B.K. 1983. Geological evolution of Peninsular Malaysia.
In Proceedings of the Workshop on Stratigraphic Correlation
of Thailand and Malaysia 1: 253-290.
Kneisel, C. 2006. Assessment of subsurface lithology
in mountain environments using 2D resistivity imaging. Geomorphology
80: 32-44.
Loke, M., Chambers, J., Rucker, D., Kuras,
O. & Wilkinson, P. 2013. Recent developments in the direct-current
geoelectrical imaging method. Journal of Applied Geophysics
95: 135-156.
Loke, M.H. 2014. 2-day workshop on 2D and 3D electrical resisitivity imaging surveys. Universiti
Sains Malaysia.
Loke, M., Wilkinson, P., Uhlemann, S., Chambers,
J. & Oxby, L. 2014. Computation
of optimized arrays for 3-D electrical imaging surveys. Geophysical
Journal International 199: 1751-1764.
Loke, M., Wilkinson, P., Tejero-Andrade, A.
& Kruse, S. 2015. Optimized arrays for resistivity measurements
confined to the perimeter of a survey area. Near Surface
Geoscience 2015- 21st European Meeting of Environmental and
Engineering Geophysics 10.3997/2214-4609.201413793.
Mallik, S., Bhattacharya, D. & Nag, S. 1983.
Behaviour of fractures in hard rocks-A
study by surface geology and radial VES method. Geoexploration
21: 181-189.
Mohamad,
H. & Roslan, N. 2017. Characterization
of aquifer properties in granite in Selangor. Sains
Malaysiana 46(12): 2331-2338.
Nunes, A.L.L. 2002. A new method for determination of transverse isotropic
orientation and the associated elastic parameters for intact
rock. International Journal of Rock Mechanics and Mining
Sciences 39: 257-273.
Panek, T., Hradecký, J. & Silhan, K. 2008. Application of electrical resistivity tomography
(ERT) in the study of various types of slope deformations in
anisotropic bedrock: Case studies from the Flysch Carpathians.
Studia Geomorphologica
Carpatho- Balcanica 32: 57-73.
Panissod, C., Michel, D., Hesse, A., Joivet, A., Tabbagh, J. & Tabbagh, A. 1998. Recent developments in shallow-depth electrical
and electrostatic prospecting using mobile arrays. Geophysics
63: 1542-1550.
Ringstad, A.C., Ringstad,
C.M. & Ringstad, M.L. 2000. 2D
electrical resistivity in a complex geology environment. Proceedings
of the Symposium on the Application of Geophysics to Engineering
and Environmental Problems. pp. 1113-1115.
Rucker,
D.F., Loke, M.H., Levitt, M.T. &
Noonan, G.E. 2010. Electrical-resistivity characterization of
an industrial site using long electrodes. Geophysics 75:
WA95-WA104.
Soupios, P., Georgakopoulos,
P., Papadopoulos, N., Saltas, V.,
Andreadakis, A., Vallianatos,
F., Sarris, A. & Makris, J. 2007. Use of engineering geophysics to investigate
a site for a building foundation. Journal of Geophysics and
Engineering 4(1): 94-103.
Stan, D. & Stan-Kłeczek, I. 2014. Application of electrical resistivity
tomography to map lithological differences and subsurface structures
(Eastern Sudetes, Czech Republic). Geomorphology 221: 113-123
Sudha, K., Israil,
M., Mittal, S. & Rai, J. 2009. Soil characterization using
electrical resistivity tomography and geotechnical investigations.
Journal of Applied Geophysics 67: 74-79.
Van Heerden,
W. 1983. Stress-stain relations applicable to overcoring
techniques in transversely isotropic rocks. International
Journal of Rock Mechanics and Mining Sciences & Geomechanics
20(6): 277-282.
Wilkinson, P., Loke,
M., Chambers, J. & Oxby, L.S.
2013. Computation of optimized arrays for 3-D electrical imaging
surveys. Geophysical Journal International 199(3): 1751-
1764.
Worotnicki, G. 2014. CSIRO triaxial stress measurement cell. Comprehensive Rock Engineering
3: 329-394.
Zhu, T., Feng, R., Hao, J.Q., Zhou, J.G., Wang, H.L. & Wang, S.Q. 2009. The
application of electrical resistivity tomography to detecting
a buried fault: A case study. Journal of Environmental &
Engineering Geophysics 14: 145-151.
*Corresponding author;
email: hariri@ukm.edu.my