Sains Malaysiana 48(6)(2019): 1163–1169

http://dx.doi.org/10.17576/jsm-2019-4806-02

 

Reflectance Characteristics of Silicon Surface Fabricated with the Arrays of Uniform Inverted Pyramid Microstructures in UV-Visible Range

(Ciri Pantulan Permukaan dalam Julat UV-Nampak Bagi Silikon yang Difabrikasi dengan Jajaran Seragam Mikrostruktur Piramid Sonsang)

 

MOHD FAIZOL ABDULLAH & ABDUL MANAF HASHIM*

 

Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 16 July 2018/Accepted: 15 November 2018

 

ABSTRACT

In this paper, inverted pyramidal microstructures are designed and fabricated on silicon (Si) surface. The characteristics of surface reflectance are simulated using two-dimensional (2D) finite-difference time-domain (FDTD) method by varying the spacing (S) and width (W) of the pyramidal microstructures. The results showed that the effect of S is more significant compared to W where the reflectance of the irradiated light has been increased gradually with the increase of S from 0 to 3 μm, and the difference is around 9.6%. Due to the etching constraint, S= 3 μm is chosen for the fabrication. Textured structure is fabricated by the anisotropic etching of tetramethyl-ammonium hydroxide (TMAH) with additional of isopropyl alcohol (IPA). Long etching time of 120 min is required to form uniform arrays of pyramidal microstructures with smooth and well-terminated four sidewalls at (111) plane. Due to the undercut etching under SiO2 mask, it results to the formation of slightly larger W and smaller S in the fabricated structures. The measured average reflectance in UV-visible range for the Si with inverted pyramidal microstructures is very low down to 10.4%. The discrepancy between the measured and simulated values is speculated to be due to the use of 2D FDTD instead of three-dimensional (3D) FDTD.

 

Keywords: Anisotropic etching; FDTD; reflectance; Si inverted pyramid; TMAH/IPA; UV-visible

 

ABSTRAK

Dalam kertas ini, mikrostruktur piramid songsang Si bersaiz mikro telah direka bentuk dan difabrikasi di atas permukaan silikon (Si). Ciri pantulan permukaan telah disimulasi menggunakan kaedah domain-masa perbezaan-terhingga (FDTD) dua-dimensi (2D) dengan membezakan jarak dan lebar mikrostruktur piramid. Data menunjukkan kesan jarak (S) adalah lebih ketara jika dibandingkan dengan kesan lebar (W) terhadap pantulan permukaan. Pantulan cahaya yang disinarkan telah meningkat secara beransur-ansur dengan peningkatan S daripada 0 kepada 3 μm dan perbezaan adalah sekitar 9.6%. Disebabkan kekangan punaran, S= 3 μm telah dipilih untuk difabrikasi. Tekstur telah difabrikasi dengan cara punaran anisotropik oleh tetra metil ammonium hidroksida (TMAH) berserta campuran alkohol isopropil (IPA). Punaran pada tempoh yang lama iaitu 120 min diperlukan untuk membentuk jajaran mikrostruktur piramid yang seragam dengan empat sisi tepi pada satah (111) yang licin berserta penamatan yang baik. Disebabkan potongan bawah punaran di bawah topeng SiO2, ia membentuk W yang sedikit lebih besar dan S yang lebih kecil bagi struktur yang telah difabrikasi. Purata pantulan dalam julat UV-nampak yang telah diukur bagi Si dengan mikrostruktur piramid songsang adalah sangat rendah iaitu 10.4%. Percanggahan antara nilai yang diukur dengan nilai yang disimulasi telah dispekulasi disebabkan penggunaan FDTD 2D dan bukannya FDTD tiga-dimensi (3D).

 

Kata kunci: FDTD; pantulan; piramid songsang Si; punaran anisotropik; TMAH/IPA; UV-nampak

REFERENCES

Abdullah, M.F. & Hashim, A.M. 2018. Design of optimum rear passivated submicron Al corrugation in very thin textured silicon back-contact back-junction solar cell for absorption enhancement up to near-infrared region. J. Photon. Energy 8: 014501.

Abdullah, M.F., Alghoul, M.A., Naser, H., Asim, N., Ahmadi, S., Yatim, B. & Sopian, K. 2016. Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell. Renew. Sustainable Energy Rev. 66: 380-398.

Fan, Y., Han, P., Liang, P., Xing, Y., Ye, Z. & Hu, S. 2013. Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells. Appl. Surf. Sci. 264: 761-766.

Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl- Ebinger, J. & Ho-Baillie, A.W.Y. 2018. Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 26: 427-436.

Green, M.A., Zhao, J., Wang, A. & Wenham, S.R. 2001. Progress and outlook for high-efficiency crystalline silicon solar cells. Sol. Energ. Mat. Sol. Cells 65: 9-16.

Iencinella, D., Centurioni, E., Rizzoli, R. & Zignani, F. 2004. An optimized texturing process for silicon solar cell substrates using TMAH. Sol. Energ. Mat. Sol. Cells 87: 725-732.

Jamil, N.A., Susthitha Menon, P., Mei, G.S. & Yeop Majlis, B. 2018. Peningkatan kepekaan biosensor urea berasaskan resonans plasmon permukaan dan tatasusunan Kretschmann dengan struktur hibrid grafin-mos2. Sains Malaysiana 47(5): 1033-1038.

Kim, J., Inns, D., Fogel, K. & Sadana, D.K. 2010. Surface texturing of single-crystalline silicon solar cells using low density SiO2 films as an anisotropic etch mask. Sol. Energ. Mat. So. Cells 94: 2091-2093.

Macdonald, D.H., Cuevas, A., Kerr, M.J., Samundsett, C., Ruby, D., Winderbaum, S. & Leo, A. 2004. Texturing industrial multi crystalline silicon solar cells. Sol. Energy 76: 277-283.

Ou, W., Zhang, Y., Li, H., Zhao, L., Zhou, C., Diao, H., Liu, M., Lu, W., Zhang, J. & Wang, W. 2011. Effects of IPA on texturing process for mono-crystalline silicon solar cell in TMAH solution. Mater. Sci. Forum 685: 31-37.

Palik, E.D. 1998. Handbook of Optical Constants of Solids. New York: Academic Press.

Papet, P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J.F., Chaumartin, A., Fave, A. & Lemiti, M. 2006. Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol. Energ. Mat. Sol. Cells 90: 2319-2328.

Park, H., Lee, J.S., Lim, H.J., Kim, D., Kwon, S. & Yoon, S. 2009. The effect of tertiary-butyl alcohol on the texturing of crystalline silicon solar cells. J. Korean Phys. Soc. 55: 1767-1771.

Saseendran, S.S. & Kottantharayil, A. 2015. Inverted pyramidal texturing of silicon through blisters in silicon nitride. IEEE J. Photovolt. 5: 819-825.

Sepeai, S., Zulhafizhazuan, W., Leong, C.S., Ludin, N.A., Ibrahim, M.A., Sopian, K. & Zaidi, S.H. 2017. Analisis arus-voltan bagi pengubahsuaian proses fabrikasi sel suria silikon jenis-p ke atas wafer silikon jenis-n. Sains Malaysiana 46(10): 1943-1949.

Shuba, M.V., Faryad, M., Solano, M.E., Monk, P.B. & Lakhtakia, A. 2015. Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: Spectral analysis. J. Opt. Soc. Am. A 32: 1222-1230.

Singh, P.K., Kumar, R., Lal, M., Singh, S.N. & Das, B.K. 2001. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol. Energ. Mat. Sol. Cells 70: 103-113.

Solano, M., Faryad, M., Hall, A.S., Mallouk, T.E., Monk, P.B. & Lakhtakia, A. 2013. Optimization of the absorption efficiency of an amorphous silicon thin-film tandem solar cell backed by a metallic surface-relief grating. Appl. Opt. 52: 966-979.

Vazsonyi, E., De Clercq, K., Einhaus, R., Van Kerschaver, E., Said, K., Poortmans, J., Szlufcik, J. & Nijs, J. 1999. Improved anisotropic etching process for industrial texturing of silicon solar cells. Sol. Energ. Mat. Sol. Cells 57: 179-188.

Xi, Z., Yang, D., Dan, W., Jun, C., Li, X. & Que, D. 2004. Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline. Renew. Energ. 29: 2101-2107.

Xu, H., Zhong, S., Zhuang, Y. & Shen, W. 2018. Controllable nanoscale inverted pyramids for high-efficient quasi-omnidirectional crystalline silicon solar cells. Nanotechnology 29: 015403.

Yang, L., Liu, Y., Wang, Y., Chen, W., Chen, Q., Wu, J., Kuznetsov, A. & Du, X. 2017. 18.87%-efficient inverted pyramid structured silicon solar cell by one-step Cu-assisted texturization technique. Sol. Energ. Mat. Sol. Cells 166: 121-126.

You, J.S., Kim, D., Huh, J.Y., Park, H.J., Pak, J.J. & Kang, C.S. 2001. Experiments on anisotropic etching of Si in TMAH. Sol. Energ. Mat. Sol. Cells 66: 37-44.

Zubel, I. & Kramkowska, M. 2004. Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sens. Actuator A-Phys. 115: 549-556.

Zubel, I. & Kramkowska, M. 2001. The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sens. Actuators A-Phys. 93: 138-147.

Zubel, I., Rola, K. & Kramkowska, M. 2011. The effect of isopropyl alcohol concentration on the etching process of Si-substrates in KOH solutions. Sens. Actuator A-Phys. 171: 436-445.

 

*Corresponding author; email: abdmanaf@utm.my

 

 

 

previous