Sains Malaysiana 48(6)(2019): 1201–1207
http://dx.doi.org/10.17576/jsm-2019-4806-07
Characterization of
Graphene based Capacitive Microphone
(Pencirian
Grafen berasaskan
Mikrofon Sentuh Berkapasitor)
HASLINAWATI MOHD MUSTAPHA1, M.F. MOHD RAZIP WEE1, AHMAD RIFQI MD ZAIN1,2 & MOHD AMBRI MOHAMED1*
1Institute
of Microengineering and Nanoelectronic, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Harvard
John A Paulson, School of Engineering and Applied
Science, Harvard University, Cambridge, MA, United States of America
Received:
25 August 2018/Accepted: 15 January 2019
ABSTRACT
This research focuses
on the design, fabrication and characterization of the graphene based
capacitive microphone. Finite element analysis (FEA)
is first simulated in order to design and study the proposed graphene based
capacitive microphone. While the fabrication introduced MEMS technique
in order to reduce the physical size, volume and cost without neglecting the
performance. This study discusses on physical characteristics of graphene
diaphragm for capacitive microphone. The fabrication of 200 nm air gap and the
free-standing suspended graphene with the contribution of the van der Waals
force between the graphene layer as a diaphragm and the substrate are presented
in this study. The first stage involved in this study was the photolithography
process of patterning electrodes with 4 different dimensions of diaphragm. The
characterization was performed by using surface profilometer,
optical microscopy, Raman spectroscopy and FESEM to
evaluate the physical characteristics of the diaphragm. In the last stage, LCR meter
was used to measure the capacitive change with different diameter of graphene
diaphragm within frequency range of 20 Hz to 20 kHz. FEA analysis
showed the good sensitivity against the frequency response for the largest
proposed diameter of diaphragm.
Keywords: Capacitive
microphone; frequency range; graphene diaphragm; MEMS
ABSTRAK
Kajian ini memberi tumpuan kepada reka bentuk, fabrikasi dan pencirian mikrofon kapasitif berasaskan grafen. Pada permulaan, FEA disimulasikan untuk mereka bentuk dan mengkaji mikrofon kapasitif berasaskan grafen. Manakala fabrikasi ini memperkenalkan teknik MEMS untuk mengurangkan ukuran fizikal, isi padu dan kos tanpa mengabaikan prestasi. Kajian ini membincangkan ciri fizikal diafragma grafen untuk mikrofon kapasitif. Kami membentangkan fabrikasi lubang udara sebanyak 200 nm dan grafen tergantung bebas dengan sumbangan kekuatan daya Van Der Waals antara lapisan grafen sebagai diafragma dan substrat. Tahap pertama akan melibatkan proses fotolitografi elektrod dengan 4 dimensi berlainan diameter diafragma. Penciriannya dilakukan oleh permukaan profilometer, mikroskop optik, spektroskopi Raman dan FESEM untuk menilai ciri-ciri diafragma. Di peringkat terakhir, meter LCR digunakan untuk mengukur perubahan kapasitif dengan diameter diafragma grafen yang berbeza dengan julat frekuensi 20 Hz hingga 20 kHz. Analisis FEA menunjukkan sensitiviti yang baik terhadap tindak balas frekuensi bagi diameter yang paling besar.
Kata kunci: Grafen
diafragma; julat
frekuensi; kapasitif mikrofon; MEMS
REFERENCES
Alfons, D.
2007. Silicon microphone development and application. Sensors and Actuators
A 133: 283-287.
Berger,
C., Phillips, R., Centeno, A., Zurutuza, A. & Vijayaraghavan, A. 2017. Capacitive pressure sensing with
suspended graphene-polymer heterostructure membranes. Nanoscale 9(44): 17439-17449.
Edhuan, I., Mohd Shukri, S., Abd Malek, A.H., Raihan, O., Mohd Asyadi, A.M.A. & Mohd Hanafi,
A. 2017. Synthesis of large-area few-layer graphene by open-flame deposition. Sains Malaysiana46(7):
1011-1016.
Geim, A.K.
& Novoselov, K.S. 2007. The rise of graphene. Nature
Materials 6(3): 183-191.
Hafzaliza,
E.Z.A., Azrul Azlan, H.
& Burhanuddin, Y.M. 2017. Characterization of
graphene nanolayers grown on MEMS interdigital supercapacitor electrode. Sains Malaysiana46(7): 1061-1067.
Huang,
H., Chen, S., Wee, A.T.S. & Chen, W. 2014. Epitaxial growth of graphene on
silicon carbide (SiC). In Graphene Properties,
Preparation, Characterisation and Devices, edited
by Skákalová, V. & Kaiser, A.B. Cambridge: Woodhead Publishing. pp. 3-26. 10.1533/9780857099334.1.3.
Md. Sajibul, A.B., Md. Nizam, U., Md. Maksudul, I., Ferdaushi,
A.B. & Sayed Shafayat, H. 2016. Synthesis of
graphene. International Nano Letters 6(2): 65-83.
Pedersen,
M., Olthuis, W. & Bergveld,
P. 1997. A silicon condenser microphone with polyimide diaphragm and backplate. Sensors and Actuators A: Physical 63(2):
97-104.
Todorovic, D., Matkovic, A., Milicevic, M., Jovanovic, D., Gajic, R., Salom,
I. & Spasenovic, M. 2015. Multilayer graphene
condenser microphone. 2D Materials 2(4): 045013.
Wang,
W.J., Lin, R.M., Zou, Q.B. & Li, X.X. 2004. Modeling and characterization
of a silicon condenser microphone. J. Micromech. Microeng. 14: 403-409.
Wang,
D., Fan, S. & Jin, W. 2015. Graphene diaphragm
analysis for pressure acoustic sensor applications. Microsyst.
Technology 21: 117-122.
Zhou,
Q. & Zettl, A. 2013. Electrostatic graphene
loudspeaker. Applied Physics Letter 102: 109-223.
Zhou,
Q., Zhen, J., Onishi, S., Crommie,
M.F. & Zettl, A.K. 2015. Graphene electrostatic
microphone and ultrasonic radio. Science PNAS 112: 8942-8946.
*Corresponding author; email:
ambri@ukm.edu.my
|