Sains Malaysiana 48(6)(2019): 1209–1219

http://dx.doi.org/10.17576/jsm-2019-4806-08

 

Effect of Synthesis Condition on the Structural Features of Ni-Ce Bimetallic Catalysts Supported on Functionalized Multi-Walled Carbon Nanotubes

(Kesan Daripada Keadaan Sintesis Pada Ciri-Ciri Struktur Ni-Ce Pemangkin Dwilogam Disokong oleh Berbilang-Fungsi Dinding Karbon Nanotiub)

 

NUR SYAHIDAH AFANDI, MEHRNOUSH KHAVARIAN & ABDUL RAHMAN MOHAMED*

 

School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Received: 19 September 2018/Accepted: 19 March 2019

 

ABSTRACT

In this paper, screening study in regards to preparation of functionalized multi-walled carbon nanotubes (FMWNT)-supported bi-metallic catalyst is discussed. Functional groups such as hydroxyl and carboxylic acid are introduced on multi-walled carbon nanotubes (MWCNT) surface using acid treatment method with the aid of probe-type ultrasonication. It is done by varying the concentration of nitric acid (HNO3) and sulphuric acid (H2SO4), acid volume ratio and treatment duration. Catalysts with different ratios of cerium and nickel nanoparticles which are either loaded inside or outside of MWCNT were prepared via ultrasonic-assisted co-precipitation method (NiCe/CNT). This is done to study the effect of cerium loadings. The characterization of the FMWNT and catalysts are carried out using transmission electron micrographs (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the treatment in concentrated HNO3/H2SO4 with volume ratio of 3:1 for 8 h was the most suitable condition to generate large amount of surface oxygen group with minimal defects. The observations for each used condition were discussed thoroughly. Decoration of MWCNT with different metal loadings resulted in different distribution and dispersion of metal on nanotubes surface.

 

Keywords: Functionalization; metal loading; multiwall carbon nanotubes; nickel-cerium based catalyst; ultrasonication

 

ABSTRAK

Dalam kertas ini, kajian saringan berkaitan dengan penyediaan pemangkin pemfungsian nanotiub karbon berbilang dinding (FMWNT) yang menyokong dua logam dibincangkan. Kumpulan fungsian seperti hidroksil dan asid karboksilik diperkenalkan pada permukaan tiub nano karbon berbilang dinding (MWCNT) menggunakan kaedah rawatan asid dengan bantuan ultrasonik jenis probe. Ia dilakukan dengan menvariasikan kepekatan asid nitrik (HNO3) dan asid sulfurik (H2SO4), nisbah isi padu asid dan tempoh uji kaji dijalankan. Pemangkin dengan nisbah zarah nano cerium dan nikel yang berbeza yang sama ada dimuatkan di dalam atau di luar MWCNT telah disediakan melalui kaedah pemendakan yang dibantu ultrasonik (NiCe/CNT). Ia dijalankan untuk mengkaji kesan muatan cerium. Pencirian FMWNT dan pemangkin ditentukan dengan menggunakan mikroskop elektron penghantaran (TEM), spektroskopi inframerah transformasi Fourier (FTIR), penganalisis termogravimetri (TGA), pencirian kawasan permukaan (BET), spektrometer pembelauan sinar-X (XRD) dan spektroskopi Raman. Keputusan menunjukkan bahawa rawatan dalam HNO3/H2SO4 yang pekat dengan nisbah isi padu acid 3:1 selama 8 jam adalah keadaan yang paling sesuai untuk menghasilkan banyak kumpulan oksigen dengan kecacatan yang minimum. Pemerhatian bagi setiap keadaan yang digunakan dibincangkan dengan teliti. Penghiasan FMWNT dengan muatan logam yang berbeza mengakibatkan pengagihan dan penyebaran logam yang berbeza pada permukaan tiub nano.

 

Kata kunci: Fungsian; muatan logam; pemangkin berasaskan nikel - cerium; tiub nano karbon berbilang dinding; ultrasonikasi

REFERENCES

Abuilaiwi, F., Laoui, T., Al-Harthi, M. & Atieh, A. 2013. Modification and functionalization of multiwalled carbon nanotube (mwcnt) via Fischer esterification. Arabian Journal for Science and Engineering 35(1c): 37-48.

Azqhandi, M.H.A., Vasheghani, B.F., Rajabi, F.H. & Keramati, M. 2017. Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study. Results in Physics 7: 1106- 1114.

Bell, T.E., Zhan, G., Wu, K., Zeng, H.C. & Torrente-Murciano, L. 2017. Modification of ammonia decomposition activity of ruthenium nanoparticles by N-doping of CNT supports. Topics in Catalysis 60(15): 1251-1259.

Chiang, Y.C., Lin, W.H. & Chang, Y.C. 2011. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Applied Surface Science 257(6): 2401-2410.

Garzia, T., Marta, E.S., Palumbo, F., Palazzo, G., Giannossa, L.C., Mangone, A., Comparelli, R., Musso, S. & Favia, P. 2017. Towards highly stable aqueous dispersions of multi-walled carbon nanotubes: The effect of oxygen plasma functionalization. Journal of Colloid and Interface Science 491: 255-264.

Gopiraman, M., Ganesh Babu, S., Khatri, Z., Yoong, A.K., Endo, M., Karvembu, R. & Kim, I.S. 2013. An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole. Carbon 62: 135-148.

Gui, M.M., Yap, Y.X., Chai, S.P. & Abdul Rahman, Mohamed. 2013. Amine-functionalization of multi-walled carbon nanotubes for adsorption of carbon dioxide. Asia-Pacific Journal of Chemical Engineering 8(2): 262-270.

Guo, T., Wu, J., Gao, H. & Chen, Y. 2017. Covalent functionalization of multi-walled carbon nanotubes with spiropyran for high solubility both in water and in non-aqueous solvents. Inorganic Chemistry Communications 83: 31-35.

Kanbur, Y. & Küçükyavuz, Z. 2011. Surface modification and characterization of multi-walled carbon nanotube. Fullerenes, Nanotubes and Carbon Nanostructures 19(6): 497-504.

Kharissova, O.V., Kharisov, B.I. & de Casas Ortiz, E.G. 2013. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances 3(47): 24812-24852.

Kuroda, C., Haniu, H., Ajima, K., Tanaka, M., Sobajima, A., Ishida, H., Tsukahara, T., Matsuda, Y., Aoki, K., Kato, H. & Saito, N. 2016. The dispersion state of tangled multi-walled carbon nanotubes affects their cytotoxicity. Nanomaterials 6(11): 219.

Le, C.M.Q., Cao, X.T. & Lim, K.T. 2017. Ultrasound-promoted direct functionalization of multi-walled carbon nanotubes in water via Diels-Alder ‘click chemistry’. Ultrasonics Sonochemistry39: 321-329.

Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E. & Meunier, V. 2011. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8): 2581-2602.

Ling, X., Wei, Y., Zou, L. & Xu, S. 2013. The effect of different order of purification treatments on the purity of multiwalled carbon nanotubes. Applied Surface Science 276: 159-166.

Liu, J., Zhao, G., Childers, D., Schweitzer, N., Marshall, C.L., Klie, R.F., Miller, J.T. & Meyer, R.J. 2014. Correlating the degree of metal-promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. Journal of Catalysis 313: 149-158.

Ma, Q., Wang, D., Wu, M., Zhao, T., Yoneyama, Y. & Tsubaki, N. 2013. Effect of catalytic site position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming. Fuel 108: 430-438.

Morsy, M., Helal, M., El-Okr, M. & Ibrahim, M. 2014. Preparation, purification and characterization of high purity multi-wall carbon nanotube. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132: 594-598.

Pistone, A., Ferlazzo, A., Lanza, M., Milone, C., Iannazzo, D., Piperno, A., Elpida, P. & Signorino, G. 2012. Morphological modification of MWCNT functionalized with HNO 3/H 2SO 4 mixtures. Journal of Nanoscience and Nanotechnology 12(6): 5054-5060.

Ren, X., Chen, C., Nagatsu, M. & Wang, X. 2011. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal 170(2): 395-410.

Sahebian, S., Zebarjad, S.M., Vahdati Khaki, J. & Lazzeri, A. 2016. The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method. International Nano Letters 6(3): 183-190.

Santangelo, S., Messina, G., Faggio, G., Abdul Rahim, S.H. & Milone, C. 2012. Effect of sulphuric-nitric acid mixture composition on surface chemistry and structural evolution of liquid-phase oxidised carbon nanotubes. Journal of Raman Spectroscopy 43(10): 1432-1442.

Tatsuru, S., Yohei, N., Taibou, Y., Junko, H., Nagahiro, S., Osamu, T., Akiharu, T., Kazuhiro, N. & Youji, O. 2013. Functionalization of multiwalled carbon nanotubes by solution plasma processing in ammonia aqueous solution and preparation of composite material with polyamide 6. Japanese Journal of Applied Physics 52(12R): 125101.

Tessonnier, J.P., Rosenthal, D., Girgsdies, F., Amadou, J., Begin, D., Pham-Huu, C., Sheng, D.S. & Schlogl, R. 2009. Influence of the graphitisation of hollow carbon nanofibers on their functionalisation and subsequent filling with metal nanoparticles. Chemical Communications 46: 7158-7160.

Wang, S., Xin, Z., Huang, X., Yu, W., Niu, S. & Shao, L. 2017. Nanosized Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Physical Chemistry Chemical Physics 19(8): 6164-6168.

Xiao, X., Sheng, Z., Yang, L. & Dong, F. 2016. Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method. Catalysis Science & Technology 6(5): 1507-1514.

Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X. & Du, Z. 2003. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. The Journal of Physical Chemistry B 107(16): 3712-3718.

Zhou, L., Forman, H., Yi, G. & Lunec, J. 2017. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicology in Vitro 42: 292-298.

 

*Corresponding author; email: chrahman@usm.my

 

 

 

previous