Sains Malaysiana 48(6)(2019): 1267–1272
http://dx.doi.org/10.17576/jsm-2019-4806-14
Kesan Penuaan Sesuhu
terhadap Sifat Mikro Kekerasan Pempaterian Sn-Ag-Cu/CNT/Cu Menggunakan
Pelekukan Nano
(Effect of Isothermal
Aging on Microhardness Properties of Sn-Ag-Cu/CNT/Cu using Nanoindentation)
NORLIZA ISMAIL1, AZMAN JALAR1*, MARIA ABU BAKAR1, ROSLINA ISMAIL2, NUR SHAFIQA SAFEE3, AHMAD GHADAFI ISMAIL1 & NAJIB SAEDI IBRAHIM4
1Institut
Kejuruteraan Mikro & Nano Elektronik (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Division
of Fine Arts, Cultural Centre, University of Malaya, 50603, Kuala Lumpur,
Wilayah Persekutuan, Malaysia
3Pusat
Asasi Pertahanan, Universiti Pertahanan Malaysia, Kem Sungai Besi, 57000 Kuala
Lumpur, Wilayah Persekutuan, Malaysia
4RedRing
Solder (M) Sdn. Bhd., Lot17486, Jalan Dua, Taman Selayang Baru, 68100 Batu
Caves, Selangor Darul Ehsan, Malaysia
Received:
2 January 2019/Accepted: 6 March 2019
ABSTRAK
Kesan penuaan terma
terhadap sifat kekerasan sambungan pateri Sn-3.0Ag-0.5Cu (SAC305)
yang ditambah dengan partikel karbon tiub nano (CNT)
telah dikaji. Sifat kekerasan yang menggambarkan kekuatan sambungan pateri
ditentukan melalui pendekatan pelekukan nano. Bahan pateri SAC ditambah
dengan 0.03% kandungan berat CNT untuk menghasilkan bahan
pes pateri SAC-CNT. Pes pateri yang telah dicetak di atas papan
litar bercetak (PCB) berkemasan kuprum (Cu) dikenakan
pematerian aliran semula pada suhu puncak 260°C untuk menghasilkan sambungan
pateri SAC dan SAC-CNT. Sambungan pateri SAC dan SAC-CNT kemudiannya dikenakan penuaan terma melalui ujian penyimpanan
suhu tinggi (HTS) selama 200, 400, 600, 800 dan 1000 j pada suhu tetap
iaitu 150°C. Sampel sambungan pateri selepas pematerian dan penuaan terma
dianalisis melalui kaedah pelekukan nano untuk menentukan sifat kekerasannya.
Untuk analisis mikrostruktur, sampel dipunar dan imej dicerap melalui mikroskop
optik. Keputusan menunjukkan nilai kekerasan menurun dengan peningkatan masa
penuaan bagi kedua-dua sambungan pateri yang dikaji. Walau bagaimanapun,
sambungan pateri SAC-CNT mempunyai kekerasan yang lebih
tinggi iaitu sebanyak 10-26% berbanding sambungan pateri SAC.
Melalui ujian pelekukan nano, sifat mikro kekerasan bagi sambungan pateri
akibat tindakan penuaan terma sesuhu yang bersifat setempat dapat ditentukan.
Corak nilai mikro kekerasan yang diperoleh adalah selari dengan corak yang
diperoleh menggunakan kaedah ujian kekerasan konvensional.
Kata kunci: Karbon
nanotiub; kekerasan; pateri Sn-Ag-Cu; pelekukan nano; penuaan terma
ABSTRACT
Effect of thermal aging
towards hardness properties of Sn-3.0Ag-0.5Cu (SAC305)
solder joint added with carbon nanotube (CNT) particles was investigated.
Hardness properties indicate the strength of solder was determined
by nanoindentation approach. SAC solder alloy was added with
0.03% weight percent of CNT to form SAC305-CNT
solder paste. Printed solder paste on printed circuit
board (PCB)
with copper (Cu) surface finish underwent reflow soldering at peak
temperature 260°C to form SAC305 and SAC305-CNT solder
joint. Then, SAC305 and SAC305-CNT were
exposed to thermal aging via high temperature storage test (HTS)
at constant temperature 150°C for about 200, 400, 600, 800 and
1000 h. Solder joint samples after reflow and thermal aging were
analysed using nanoindentation method to determine hardness properties.
For microstructure analysis, samples were etched and images were
captured via optical microscope. The results showed microhardness
values decrease with increasing of aging time for both investigated
solder joints. However, hardness values for SAC305-CNT
solder joint was higher (~10-26%) compared to SAC305 solder joint without CNT.
From nanoindentation test, localized microhardness properties of
solder joint under isothermal aging have been attained. Trend of
micro hardness values obtained was parallel with the trend gained
by using conventional hardness test.
Keywords: Carbon nanotube; hardness; nanoindentation; Sn-Ag-Cu;
thermal aging
REFERENCES
Abdullah,
I., Zulkifli, M.N., Jalar, A. & Ismail, R. 2017. Deformation behavior
relationship between tensile and nanoindentation test of SAC305 lead-free
solder wire. Soldering & Surface Mount Technology 30(3): 194-202.
Askeland,
D.R., Fulay, D.P. & Wright, W.J. 2011. The Science and Engineering of
Materials. 6 ed. USA: Global Engineering.
Bakar,
M.A., Jalar, A., Daud, A.R., Ismail, R.C.L.N. & Ibrahim, N.S. 2016.
Nanoindentation approach on investigating micromechanical properties of joining
from green solder materials. Sains Malaysiana 45(8): 1275-1279.
Che
Ani, F., Jalar, A., Saad, A.A., Khor, C.Y., Abas, M.A., Bachok, Z. &
Othman, N.K. 2018. Characterization of SAC-xNiO nano-reinforced lead-free
solder joint in an ultra-fine package assembly. Soldering & Surface
Mount Technology 31(2): 109-124.
Chellvarajoo,
S., Abdullah, M.Z. & Khor, C.Y. 2015. Effects of diamond nanoparticles
reinforcement into lead-free Sn- 3.0Ag-0.5Cu
solder pastes on microstructure and mechanical properties after reflowing
soldering process. Materials & Design 82: 206-215.
Chen,
G., Peng, H., Silberschmidt, V.V., Chan, Y.C., Liu, C. & Wu, F. 2016.
Performance of Sn-3.0Ag-0.5Cu
composite solder with TiC reinforcement: Physical properties, solderability and
microstructural evolution under isothermal ageing. Journal of Alloys and
Compounds 685: 680-689.
Deng,
X., Chawla, N., Chawla, K. & Koopman, M. 2004. Deformation behavior of (cu,
ag)-sn intermetallics by nanoindentation. Acta Materilia 52(14):
4291-4303.
El-Bediwi,
A.B., El-Shafei, A. & Kamal, M. 2015. Microstructure, physical and
soldering properties of Tin-Zinc-Bismuth alloy. Material Science an Indian
Journal 2(2): 29-35.
Fu, N.,
Wu, J., Ahmed, S., Suhling, J.C. & Lall, P. 2017. Investigation of aging
induced evolution of the microstructure of SAC305 lead free solder. Proceedings
of the ASME 2017 International Technical Conference and Exhibition on Packaging
and Integration of Electronic and Photonic Microsystems. pp. 1-11.
Gain, A.K. & Chan, Y.C. 2014.
Growth mechanism of intermetallic compounds and damping properties of Sn-Ag- Cu-1wt% nano-ZrO2 composite
solders. Microelectronics Reliability 54: 945-955.
Gain, A.K. & Zhang,
L. 2017. Effect of isothermal aging on microstructure, electrical resistivity
and damping properties of Sn-Ag-Cu solder. J. Mater. Sci. Mater. Electron 28(13):
9363-9370.
Gesheng,
X., Xuexia, Y., Guozheng, Y., Zhigang, L. & Xuefeng, S. 2015.
Mechanical properties of intermetallic
compounds at the Sn-3.0Ag-0.5Cu/Cu joint interface using nanoindentation.
Materials & Design 88: 520-527.
Ismail,
N., Jalar, A., Ismail, R. & Bakar, A.B. 2018. Kesan penambahan CNT terhadap
pertumbuhan lapisan IMC bahan pateri SAC/Cu akibat penuaan terma. Sains
Malaysiana 47(7): 1585-1590.
Jalar,
A., Bakar, M.A., Ismail, R., Ibrahim, N.S. & Ambak, M.A. 2018. Effect of
coloured pigment on intermetallic compound growth of Sn-3.0Ag-0.5Cu
solder joint. Sains Malaysiana 47(5): 1005-1010.
Karamouz,
M., Azarbarmas, M., Emamy, M. & Alipour, M. 2013. Microstructure, hardness
and tensile properties of A380 aluminum alloy with and without Li additions. Mater.
Sci. Eng. A 582: 409-414.
Kumar,
K.M., Kripesh, V. & Tay, A.O. 2008. Single-wall carbon nanotube (SWCNT)
functionalized Sn-Ag-Cu lead-free composite solders. Journal Alloys Compound 450: 229-237.
Liu,
C.Z. & Chen, J. 2007. Nanoindentation of lead-free solders in
microelectronic packaging. Materials Science and Engineering A 448:
340-344.
Lotfian,
S., Molina-Aldareguia, J.M., Yazzie, K.E., Llorca, J. & Chawla, N. 2013.
Mechanical characterization of lead-free Sn-Ag-Cu solder joints by
high-temperature nanoindentation. Journal of Electronic Materials 42(6):
1085-1091.
Nai,
S.M.L., Wei, J. & Gupta, M. 2008. Effect of carbon nanotubes on the shear
strength and electrical resistivity of a lead-free solder. J. Electron
Mater. 37: 515-522.
Nai,
S.M.L., Wei, J. & Gupta, M. 2006. Improving the performance of lead-free
solder reinforced with multi-walled carbon nanotubes. Materials Science and
Engineering: A 423(1-2): 166-169.
Pietrikova,
A. & Durisin, J. 2010. Microstructure of solder joints and isothermal
aging. Acta Electrotechnica et Informatica 10(3): 43-46.
Saud,
N. & Salleh, M.A.A.M. 2013. Low and high temperature isothermal
aging effect on morphology and diffusion kinetics of intermetallic
compound (IMC) for n-Cu-Si3N4 composite solder. Key Engineering
Materials 594-595: 666-670.
Sauli,
Z., Retnasamy, V., Vairavan, R., Khalid, N. & Abdullah, N. 2014. Wire bond shear
test simulation on flat surface bond pad. Procedia - Social and Behavioral
Sciences 129: 328-333.
Tan,
A.T., Tan, A.W. & Yusof, F. 2017. Evolution of microstructure and
mechanical properties of Cu/SAC305/Cu solder joints under the influence of low
ultrasonic power. Journal of Alloys and Compounds 705: 188-197.
Tama,
F., Chan, Y.C. & Chan, D.K. 2014. Influence of cerium oxide (CeO2)
nanoparticles on the microstructure and hardness of tin-silver-copper
(Sn-Ag-Cu) solders on silver (Ag) surface-finished copper (Cu) substrates. J.
Mater. Sci.: Mater. Electron 25: 5375-5387.
Yahaya,
M.Z. & Mohamad, A.A. 2017. Hardness testing of lead-free solders: A review. Soldering & Surface Mount Technology 29(4): 203-224.
Yahaya,
M.Z., Che, A.F., Samsudin, Z., Sahin, S., Abdullah, M.Z. & Mohamad, A.A.
2016. Hardness profiles of Sn-3.0Ag-0.5Cu-
TiO2 composite solder by nanoindentation. Materials
Science & Engineering A 669: 178-186.
Yusoff,
W.Y.W., Ismail, N., Safee, N.S., Ismail, A., Jalar, A. & Bakar,
M.A. 2019. Correlation of microstructural evolution and hardness
properties of 99.0Sn-0.3Ag-0.7Cu (SAC0307) lead-free solder under
blast wave condition. Soldering & Surface Mount Technology
31(2): 102-108.
Zhongbao,
Y., Wei, Z. & Ping, W. 2014. Effects of Ni-coated carbon nanotubes
addition on the microstructure and mechanical properties of Sn-Ag-Cu
solder alloys. Materials Science and Engineering A 590: 295-300.
Zhu,
Z., Chan, Y.C., Chen, Z., Gan, C.L. & Wu, F. 2018. Effect of the size of
carbon nanotubes (CNTs) on the microstructure and mechanical strength of
CNTs-doped composite Sn0.3Ag0.7Cu-CNTs
solder. Materials Science & Engineering A 727: 160-169.
*Corresponding author; email:
azmn@ukm.my
|