Sains Malaysiana 48(6)(2019): 1267–1272

http://dx.doi.org/10.17576/jsm-2019-4806-14

 

Kesan Penuaan Sesuhu terhadap Sifat Mikro Kekerasan Pempaterian Sn-Ag-Cu/CNT/Cu Menggunakan Pelekukan Nano

(Effect of Isothermal Aging on Microhardness Properties of Sn-Ag-Cu/CNT/Cu using Nanoindentation)

 

NORLIZA ISMAIL1, AZMAN JALAR1*, MARIA ABU BAKAR1, ROSLINA ISMAIL2, NUR SHAFIQA SAFEE3, AHMAD GHADAFI ISMAIL1 & NAJIB SAEDI IBRAHIM4

 

1Institut Kejuruteraan Mikro & Nano Elektronik (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Division of Fine Arts, Cultural Centre, University of Malaya, 50603, Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

3Pusat Asasi Pertahanan, Universiti Pertahanan Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

4RedRing Solder (M) Sdn. Bhd., Lot17486, Jalan Dua, Taman Selayang Baru, 68100 Batu Caves, Selangor Darul Ehsan, Malaysia

 

Received: 2 January 2019/Accepted: 6 March 2019

 

ABSTRAK

Kesan penuaan terma terhadap sifat kekerasan sambungan pateri Sn-3.0Ag-0.5Cu (SAC305) yang ditambah dengan partikel karbon tiub nano (CNT) telah dikaji. Sifat kekerasan yang menggambarkan kekuatan sambungan pateri ditentukan melalui pendekatan pelekukan nano. Bahan pateri SAC ditambah dengan 0.03% kandungan berat CNT untuk menghasilkan bahan pes pateri SAC-CNT. Pes pateri yang telah dicetak di atas papan litar bercetak (PCB) berkemasan kuprum (Cu) dikenakan pematerian aliran semula pada suhu puncak 260°C untuk menghasilkan sambungan pateri SAC dan SAC-CNT. Sambungan pateri SAC dan SAC-CNT kemudiannya dikenakan penuaan terma melalui ujian penyimpanan suhu tinggi (HTS) selama 200, 400, 600, 800 dan 1000 j pada suhu tetap iaitu 150°C. Sampel sambungan pateri selepas pematerian dan penuaan terma dianalisis melalui kaedah pelekukan nano untuk menentukan sifat kekerasannya. Untuk analisis mikrostruktur, sampel dipunar dan imej dicerap melalui mikroskop optik. Keputusan menunjukkan nilai kekerasan menurun dengan peningkatan masa penuaan bagi kedua-dua sambungan pateri yang dikaji. Walau bagaimanapun, sambungan pateri SAC-CNT mempunyai kekerasan yang lebih tinggi iaitu sebanyak 10-26% berbanding sambungan pateri SAC. Melalui ujian pelekukan nano, sifat mikro kekerasan bagi sambungan pateri akibat tindakan penuaan terma sesuhu yang bersifat setempat dapat ditentukan. Corak nilai mikro kekerasan yang diperoleh adalah selari dengan corak yang diperoleh menggunakan kaedah ujian kekerasan konvensional.

 

Kata kunci: Karbon nanotiub; kekerasan; pateri Sn-Ag-Cu; pelekukan nano; penuaan terma

 

ABSTRACT

Effect of thermal aging towards hardness properties of Sn-3.0Ag-0.5Cu (SAC305) solder joint added with carbon nanotube (CNT) particles was investigated. Hardness properties indicate the strength of solder was determined by nanoindentation approach. SAC solder alloy was added with 0.03% weight percent of CNT to form SAC305-CNT solder paste. Printed solder paste on printed circuit board (PCB) with copper (Cu) surface finish underwent reflow soldering at peak temperature 260°C to form SAC305 and SAC305-CNT solder joint. Then, SAC305 and SAC305-CNT were exposed to thermal aging via high temperature storage test (HTS) at constant temperature 150°C for about 200, 400, 600, 800 and 1000 h. Solder joint samples after reflow and thermal aging were analysed using nanoindentation method to determine hardness properties. For microstructure analysis, samples were etched and images were captured via optical microscope. The results showed microhardness values decrease with increasing of aging time for both investigated solder joints. However, hardness values for SAC305-CNT solder joint was higher (~10-26%) compared to SAC305 solder joint without CNT. From nanoindentation test, localized microhardness properties of solder joint under isothermal aging have been attained. Trend of micro hardness values obtained was parallel with the trend gained by using conventional hardness test.

Keywords: Carbon nanotube; hardness; nanoindentation; Sn-Ag-Cu; thermal aging

REFERENCES

 

Abdullah, I., Zulkifli, M.N., Jalar, A. & Ismail, R. 2017. Deformation behavior relationship between tensile and nanoindentation test of SAC305 lead-free solder wire. Soldering & Surface Mount Technology 30(3): 194-202.

Askeland, D.R., Fulay, D.P. & Wright, W.J. 2011. The Science and Engineering of Materials. 6 ed. USA: Global Engineering.

Bakar, M.A., Jalar, A., Daud, A.R., Ismail, R.C.L.N. & Ibrahim, N.S. 2016. Nanoindentation approach on investigating micromechanical properties of joining from green solder materials. Sains Malaysiana 45(8): 1275-1279.

Che Ani, F., Jalar, A., Saad, A.A., Khor, C.Y., Abas, M.A., Bachok, Z. & Othman, N.K. 2018. Characterization of SAC-xNiO nano-reinforced lead-free solder joint in an ultra-fine package assembly. Soldering & Surface Mount Technology 31(2): 109-124.

Chellvarajoo, S., Abdullah, M.Z. & Khor, C.Y. 2015. Effects of diamond nanoparticles reinforcement into lead-free Sn- 3.0Ag-0.5Cu solder pastes on microstructure and mechanical properties after reflowing soldering process. Materials & Design 82: 206-215.

Chen, G., Peng, H., Silberschmidt, V.V., Chan, Y.C., Liu, C. & Wu, F. 2016. Performance of Sn-3.0Ag-0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing. Journal of Alloys and Compounds 685: 680-689.

Deng, X., Chawla, N., Chawla, K. & Koopman, M. 2004. Deformation behavior of (cu, ag)-sn intermetallics by nanoindentation. Acta Materilia 52(14): 4291-4303.

El-Bediwi, A.B., El-Shafei, A. & Kamal, M. 2015. Microstructure, physical and soldering properties of Tin-Zinc-Bismuth alloy. Material Science an Indian Journal 2(2): 29-35.

Fu, N., Wu, J., Ahmed, S., Suhling, J.C. & Lall, P. 2017. Investigation of aging induced evolution of the microstructure of SAC305 lead free solder. Proceedings of the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. pp. 1-11.

Gain, A.K. & Chan, Y.C. 2014. Growth mechanism of intermetallic compounds and damping properties of Sn-Ag- Cu-1wt% nano-ZrO2 composite solders. Microelectronics Reliability 54: 945-955.

Gain, A.K. & Zhang, L. 2017. Effect of isothermal aging on microstructure, electrical resistivity and damping properties of Sn-Ag-Cu solder. J. Mater. Sci. Mater. Electron 28(13): 9363-9370.

Gesheng, X., Xuexia, Y., Guozheng, Y., Zhigang, L. & Xuefeng, S. 2015. Mechanical properties of intermetallic compounds at the Sn-3.0Ag-0.5Cu/Cu joint interface using nanoindentation. Materials & Design 88: 520-527.

Ismail, N., Jalar, A., Ismail, R. & Bakar, A.B. 2018. Kesan penambahan CNT terhadap pertumbuhan lapisan IMC bahan pateri SAC/Cu akibat penuaan terma. Sains Malaysiana 47(7): 1585-1590.

Jalar, A., Bakar, M.A., Ismail, R., Ibrahim, N.S. & Ambak, M.A. 2018. Effect of coloured pigment on intermetallic compound growth of Sn-3.0Ag-0.5Cu solder joint. Sains Malaysiana 47(5): 1005-1010.

Karamouz, M., Azarbarmas, M., Emamy, M. & Alipour, M. 2013. Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions. Mater. Sci. Eng. A 582: 409-414.

Kumar, K.M., Kripesh, V. & Tay, A.O. 2008. Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders. Journal Alloys Compound 450: 229-237.

Liu, C.Z. & Chen, J. 2007. Nanoindentation of lead-free solders in microelectronic packaging. Materials Science and Engineering A 448: 340-344.

Lotfian, S., Molina-Aldareguia, J.M., Yazzie, K.E., Llorca, J. & Chawla, N. 2013. Mechanical characterization of lead-free Sn-Ag-Cu solder joints by high-temperature nanoindentation. Journal of Electronic Materials 42(6): 1085-1091.

Nai, S.M.L., Wei, J. & Gupta, M. 2008. Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J. Electron Mater. 37: 515-522.

Nai, S.M.L., Wei, J. & Gupta, M. 2006. Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Materials Science and Engineering: A 423(1-2): 166-169.

Pietrikova, A. & Durisin, J. 2010. Microstructure of solder joints and isothermal aging. Acta Electrotechnica et Informatica 10(3): 43-46.

Saud, N. & Salleh, M.A.A.M. 2013. Low and high temperature isothermal aging effect on morphology and diffusion kinetics of intermetallic compound (IMC) for n-Cu-Si3N4 composite solder. Key Engineering Materials 594-595: 666-670.

Sauli, Z., Retnasamy, V., Vairavan, R., Khalid, N. & Abdullah, N. 2014. Wire bond shear test simulation on flat surface bond pad. Procedia - Social and Behavioral Sciences 129: 328-333.

Tan, A.T., Tan, A.W. & Yusof, F. 2017. Evolution of microstructure and mechanical properties of Cu/SAC305/Cu solder joints under the influence of low ultrasonic power. Journal of Alloys and Compounds 705: 188-197.

Tama, F., Chan, Y.C. & Chan, D.K. 2014. Influence of cerium oxide (CeO2) nanoparticles on the microstructure and hardness of tin-silver-copper (Sn-Ag-Cu) solders on silver (Ag) surface-finished copper (Cu) substrates. J. Mater. Sci.: Mater. Electron 25: 5375-5387.

Yahaya, M.Z. & Mohamad, A.A. 2017. Hardness testing of lead-free solders: A review. Soldering & Surface Mount Technology 29(4): 203-224.

Yahaya, M.Z., Che, A.F., Samsudin, Z., Sahin, S., Abdullah, M.Z. & Mohamad, A.A. 2016. Hardness profiles of Sn-3.0Ag-0.5Cu- TiO2 composite solder by nanoindentation. Materials Science & Engineering A 669: 178-186.

Yusoff, W.Y.W., Ismail, N., Safee, N.S., Ismail, A., Jalar, A. & Bakar, M.A. 2019. Correlation of microstructural evolution and hardness properties of 99.0Sn-0.3Ag-0.7Cu (SAC0307) lead-free solder under blast wave condition. Soldering & Surface Mount Technology 31(2): 102-108.

Zhongbao, Y., Wei, Z. & Ping, W. 2014. Effects of Ni-coated carbon nanotubes addition on the microstructure and mechanical properties of Sn-Ag-Cu solder alloys. Materials Science and Engineering A 590: 295-300.

Zhu, Z., Chan, Y.C., Chen, Z., Gan, C.L. & Wu, F. 2018. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Materials Science & Engineering A 727: 160-169.

 

*Corresponding author; email: azmn@ukm.my

 

 

previous