Sains Malaysiana 48(6)(2019): 1281–1288
http://dx.doi.org/10.17576/jsm-2019-4806-16
Temperature and Power
Dependence of Photoluminescence in PbS Quantum Dots Nanoparticles
(Kesandaran Suhu dan Kuasa
Pengujaan terhadap Fotoluminesens Titik Kuantum PbS Berzarah Nano)
MUHAMMAD SAFWAN ZAINI1, MAZLIANA AHMAD KAMARUDIN1*, JOSEPHINE LIEW YING CHYI1, SHAHRUL AINLIAH ALANG AHMAD2 & ABDUL RAHMAN MOHMAD3
1Department of Physics, Faculty
of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
2Department of Chemistry,
Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
3Institute of
Microengineering and Nanoelectronics, Level 4, Research Complex, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
2 January 2019/Accepted: 28 February 2019
ABSTRACT
In this study, the
synthesis and the effect of temperature and power excitation towards
photoluminescence (PL) emission of colloidal PbS quantum dots
(QDs)
were reported. Water soluble PbS QDs capped with a mixture of
1-thioglycerol (TGL) and dithioglycerol (DTG)
was synthesized via colloidal chemistry method at room temperature. The PL emission
of PbS QDs was investigated under temperature range from 10
K to 300 K and we found that the PL emission blue-shifted when
the temperature is increased. From high resolution transmission electron
microscopy (HRTEM), the average size of PbS core QDs
is determined to be 6 nm and the integrated PL intensity
(IPL)
versus excitation power density shows the recombination of electrons and holes
occur efficiently at low and high temperature for the PbS QDs.
Full width half maximum (FWHM) shows a gradual broadening with
the increasing temperature due to the interaction of charge carriers with
phonons.
Keywords: Near
infrared; PbS; photoluminescence; quantum dots
ABSTRAK
Dalam kajian ini, sintesis
dan kesan terhadap suhu dan kuasa pengujaan fotoluminesens (PL)
ke atas koloid PbS titik kuantum (QDs) dilaporkan. PbS QDs
larut air ditutup dengan campuran ligan 1-tiogliserol (TGL)
dan ditiogliserol (DTG) telah disintesis melalui kaedah
koloid kimia pada suhu bilik. Pancaran PL daripada PbS QDs
telah diuji pada julat suhu 10 K sehingga 300 K dan kami mendapati
bahawa pancaran PL telah terjadi anjakan biru dengan peningkatan suhu. Daripada
mikroskop elektron transmisi tinggi (HRTEM),
purata saiz PbS QDs ialah sekitar 6 nm dan daripada data
keamatan PL bersepadu (IPL) berlawanan ketumpatan kuasa
pengujaan telah menunjukkan penggabungan semula eksiton berlaku
secara cekap di dalam suhu rendah dan tinggi untuk PbS QDs.
Lebar separuh ketinggian maksimum (FWHM) menunjukkan pelebaran beransur
bersama peningkatan suhu disebabkan interaksi daripada pembawa cas
dan juga fonon.
Kata kunci: Fotoluminesens; inframerah dekat; PbS; titik kuantum
REFERENCES
Alivisatos, A.P. 1996. Semiconductor clusters, nanocrystals, and
quantum dot. Science 271(5251): 933-937.
Ashari, F., Liew,
J.Y.C., Talib, Z.A., Yunus, W.M.M., Jian, L., Kee, L., Dee, C. & Yeop
Majlis, B. 2016. Optical characterization of colloidal zinc selenide quantum
dots prepared through hydrothermal method. Sains Malaysiana 45(8):
1191-1196.
Awschalom, D.D. &
Johnston-Halperin, E. 2001. Spin spectroscopy of dark excitons in CdSe quantum
dots to 60 T. Physical Review B 63: 1-5.
Binetti,
E., Striccoli, M., Sibillano, T., Giannini, C., Brescia, R., Falqui, A. &
Comparelli, R. 2015. Tuning light emission of PbS nanocrystals from infrared to
visible range by cation exchange. Science and Technology of Advanced
Materials 16(5): 1-10.
Fomin,
V.M., Gladilin, V.N., Devreese, J.T., Pokatilov, E.P., Balaban, S.N. &
Klimin, S.N. 1998. Photoluminescence of spherical quantum dots. Physical
Review B 57(4): 2415-2425.
Gao, F.
2011. Effects of quantum confinement and shape on band gap of core/shell
quantum dots and nanowires. Applied Physics Letter 98(193105): 3-6.
Gruning,
H., Kohary, K., Baranovskii, S.D., Rubel, O., Klar, P.J. & Ramakrishnan, A.
2004. Hopping relaxation of excitons in GaInNAs/GaNAs quantum wells. Physics
States Solid 112(1): 109-112.
Guchhait,
A., Rath, A.K. & Pal, A.J. 2011. To make polymer: Quantum dot hybrid solar
cells NIR-active by increasing diameter of PbS nanoparticles. Solar Energy
Materials and Solar Cells 95(2): 651-656.
Hasbullah,
N.F., Ng, J.S., Liu, H., Hopkinson, M., David, J.P.R., Badcock, T.J. &
Mowbray, D.J. 2009. Dependence of the electroluminescence on the spacer layer growth
temperature of multilayer quantum-dot laser structures. IEEE Journal of
Quantum Electronics 45(1): 79-85.
Iacovo,
A., Venettacci, C., Colace, L., Scopa, L. & Foglia, S. 2016. PbS colloidal
quantum dot photodetectors operating in the near infrared. Nature Publishing
Group 6: 1-9.
Jin,
S., Zheng, Y., Li, A., Jin, S., Zheng, Y. & Li, A. 1997. Characterization
of photoluminescence intensity and efficiency of free excitons in semiconductor
quantum well structures. Journal Applied Physics 82(8): 3870-3873.
Klotz,
F., Jovanov, V., Kierig, J., Clark, E.C., Rudolph, D., Heiss, D. & Bichler,
M. 2010. Observation of an electrically tunable exciton gfactor in InGaAs/GaAs
quantum dots. Applied Physics Letter 96: 053113.
Litvyak,
V.M., Cherbunin, R.V. & Onushchenko, A.A. 2017. Temperature dependence of
the optical transitions of PbS quantum dots in silicate glasses. Bulletin of
the Russian Academy of Sciences: Physics 81(12): 1490-1492.
Liu,
Y., Kim, D., Morris, O.P., Zhitomirsky, D. & Grossman, C. 2018. Origins of
the Stokes shift in PbS quantum dots. ACS Nano 12: 2838-2845.
Marshall,
A.R., Beard, M.C. & Johnson, J.C. 2016. Nongeminate radiative recombination
of free charges in cation-exchanged PbS quantum dot films. Chemical Physics 471:
75-80.
Martini,
S., Teles, L.K., Marques, M., Marques, A.E.B. & Quivy, A.A. 2011. Radiative
recombination mechanisms of large InAs/GaAs quantum dots. World Journal of
Condensed Matter Physics 1: 161-166.
Moreels,
I., Lambert, K., Smeets, D., Muynck, D.D., Nollet, T., Martins, C., Vanhaecke,
F., Delerue, C., Allan, G. & Hens, Z. 2009. Size-dependent optical
properties of colloidal PbS quantum dots. ACS Nano 3(10): 3023-3030.
Okamoto,
K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T. & Scherer, A. 2004.
Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature
Publishing Group 3: 601-605.
Olkhovets,
A., Hsu, R., Lipovskii, A. & Wise, F.W. 1998. Size-dependent temperature
variation of the energy gap in lead-salt quantum dots. Physical Review L 81(16):
3539-3542.
Papagiorgis,
P., Stavrinadis, A., Othonos, A., Konstantatos, G. & Itskos, G. 2016. The
influence of doping on the optoelectronic properties of PbS colloidal quantum
dot solids. Nature Publishing Group 6(18735): 1-16.
Peterson,
J.J. & Krauss, T.D. 2006. Fluorescence spectroscopy of single lead sulfide
quantum dots. Nano Letters 6(3): 510-514.
Rajh,
T., Olga, I., Micic, O.I. & Nozik, A.J. 1993. Synthesis and
characterization of surface-modified colloidal CdTe quantum dots. The
Journal of Physical Chemistry 97(46): 11999.
Reilly,
N., Wehrung, M., O’Dell, R.A. & Sun, L. 2014. Ultrasmall colloidal PbS
quantum dots. Materials Chemistry and Physics 147: 1-4.
Rogach,
A.L., Eychmüller, A., Hickey, S.G. & Kershaw, S.V. 2007. Reviews
infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy,
and applications. Small Journal 4: 536-557.
Ru,
E.C.L., Fack, J. & Murray, R. 2003. Temperature and excitation density
dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Physical
Review B 67: 245318.
Ryu,
S., Park, J., Oh, J., Long, D.H., Kwon, K., Kim, Y., Lee, J.K. & Kim, J.H.
2009. Analysis of improved efficiency of InGaN light-emitting diode with bottom
photonic crystal fabricated by anodized aluminum oxide. Advanced Functional
Materials 19: 1650-1655.
Sargent,
E.H. 2005. Infrared quantum dots. Advanced Materials 17(5): 515-522.
Shamsudin,
S. & Junas, J. 2018. Kajian terhadap sifat optik titik kuantum kadmium
sulfida pada pelbagai nilai pH dan modifikasi permukaan dengan asid
tioglikolik. Sains Malaysiana 47(11): 2841-2849.
Szendrei,
K., Speirs, M., Gomulya, W., Jarzab, D., Manca, M., Mikhnenko, O.V., Yarema,
M., Kooi, B.J., Heiss, W. & Loi, M.A. 2012. Exploring the origin of the
temperature-dependent behavior of PbS nanocrystal thin films and solar cells. Advanced
Functional Materials 22: 1598-1605.
Tasco,
V., Baranov, A. & Satpati, B. 2007. Molecular-beam epitaxy of InSb/GaSb
quantum dots. Journal of Applied Physics 101: 124309.
Turyanska,
L., Moro, F., Knott, A.N., Fay, M.W., Bradshaw, T.D. & Patanè, A. 2013.
Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals. Particle
& Particle Systems Characterization 30: 945-949.
Turyanska,
L., Elfurawi, U., Li, M., Fay, M.W. & Thomas, N.R. 2009. Tailoring the
physical properties of thiol-capped PbS quantum dots by thermal annealing. Nanotechnology 20: 315604.
Turyanska,
L., Patanè, A. & Henini, M. 2007. Temperature dependence of the
photoluminescence emission from thiol-capped PbS quantum dots. Applied Physics
Letter 90: 101913.
Varshni,
P. 1967. Temperature dependence of the energy gap in semiconductors. Physica 34: 149-154.
Wang,
J.S., Smith, H.E. & Brown, G.J. 2015. Stability and aging studies of lead
sulfide quantum dot film: Photoabsorption, morphology, and chemical state
characteristics. Materials Chemistry and Physics 154: 44-52.
Wise,
F.W. 2000. Lead salt quantum dots: The limit of strong quantum confinement. Accounts
of Chemical Research 33(11): 773-780.
Yamada, Y., Yasuda, H., Tayagaki,
T. & Kanemitsu, Y. 2009. Temperature dependence of photoluminescence
spectra of non-doped and electron-doped SrTiO 3: Crossover from Auger
recombination to single-carrier trapping. Physical Review Letter 102:
247401.
Yang, L.M., Ye, Z.Z.,
Zeng, Y.J., Xu, W.Z., Zhu, L.P. & Zhao, B.H. 2006. Density controllable
growth of ZnO quantum dots by MOCVD. Solid State Communications 138:
577-579.
Yin, Y. &
Alivisatos, A.P. 2005. Colloidal nanocrystal synthesis and the organic-inorganic
interface. Nature 437: 664-670.
Yoffe, A.D. 2001.
Semiconductor quantum dots and related systems: Electronic, optical,
luminescence and related properties of low dimensional systems. Advances in
Physics 50(1): 1-208.
Yu, Y., Zhang, K. &
Sun, S. 2013. Effect of ligands on the photoluminescence properties of
water-soluble PbS quantum dots. Journal of Molecular Structure 1031:
194-200.
Zhou, S., Liu, Z., Wang,
Y., Lu, K., Yang, F., Gu, M., Xu, Y., Chen, S., Ling, X., Zhang, Y., Li, F.,
Yuan, J. & Ma, W. 2019. Towards scalable synthesis of high-quality PbS
colloidal quantum dots for photovoltaic applications. Journal of Materials
Chemistry C 7: 1575-1583.
*Corresponding
author; email: mazliana_ak@upm.edu.my
|