Sains Malaysiana 48(6)(2019): 1281–1288

http://dx.doi.org/10.17576/jsm-2019-4806-16

 

Temperature and Power Dependence of Photoluminescence in PbS Quantum Dots Nanoparticles

(Kesandaran Suhu dan Kuasa Pengujaan terhadap Fotoluminesens Titik Kuantum PbS Berzarah Nano)

MUHAMMAD SAFWAN ZAINI1, MAZLIANA AHMAD KAMARUDIN1*, JOSEPHINE LIEW YING CHYI1, SHAHRUL AINLIAH ALANG AHMAD2 & ABDUL RAHMAN MOHMAD3

 

1Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Institute of Microengineering and Nanoelectronics, Level 4, Research Complex, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 2 January 2019/Accepted: 28 February 2019

 

ABSTRACT

In this study, the synthesis and the effect of temperature and power excitation towards photoluminescence (PL) emission of colloidal PbS quantum dots (QDs) were reported. Water soluble PbS QDs capped with a mixture of 1-thioglycerol (TGL) and dithioglycerol (DTG) was synthesized via colloidal chemistry method at room temperature. The PL emission of PbS QDs was investigated under temperature range from 10 K to 300 K and we found that the PL emission blue-shifted when the temperature is increased. From high resolution transmission electron microscopy (HRTEM), the average size of PbS core QDs is determined to be 6 nm and the integrated PL intensity (IPL) versus excitation power density shows the recombination of electrons and holes occur efficiently at low and high temperature for the PbS QDs. Full width half maximum (FWHM) shows a gradual broadening with the increasing temperature due to the interaction of charge carriers with phonons.

 

Keywords: Near infrared; PbS; photoluminescence; quantum dots

 

ABSTRAK

Dalam kajian ini, sintesis dan kesan terhadap suhu dan kuasa pengujaan fotoluminesens (PL) ke atas koloid PbS titik kuantum (QDs) dilaporkan. PbS QDs larut air ditutup dengan campuran ligan 1-tiogliserol (TGL) dan ditiogliserol (DTG) telah disintesis melalui kaedah koloid kimia pada suhu bilik. Pancaran PL daripada PbS QDs telah diuji pada julat suhu 10 K sehingga 300 K dan kami mendapati bahawa pancaran PL telah terjadi anjakan biru dengan peningkatan suhu. Daripada mikroskop elektron transmisi tinggi (HRTEM), purata saiz PbS QDs ialah sekitar 6 nm dan daripada data keamatan PL bersepadu (IPL) berlawanan ketumpatan kuasa pengujaan telah menunjukkan penggabungan semula eksiton berlaku secara cekap di dalam suhu rendah dan tinggi untuk PbS QDs. Lebar separuh ketinggian maksimum (FWHM) menunjukkan pelebaran beransur bersama peningkatan suhu disebabkan interaksi daripada pembawa cas dan juga fonon.

 

Kata kunci: Fotoluminesens; inframerah dekat; PbS; titik kuantum

REFERENCES

Alivisatos, A.P. 1996. Semiconductor clusters, nanocrystals, and quantum dot. Science 271(5251): 933-937.

Ashari, F., Liew, J.Y.C., Talib, Z.A., Yunus, W.M.M., Jian, L., Kee, L., Dee, C. & Yeop Majlis, B. 2016. Optical characterization of colloidal zinc selenide quantum dots prepared through hydrothermal method. Sains Malaysiana 45(8): 1191-1196.

Awschalom, D.D. & Johnston-Halperin, E. 2001. Spin spectroscopy of dark excitons in CdSe quantum dots to 60 T. Physical Review B 63: 1-5.

Binetti, E., Striccoli, M., Sibillano, T., Giannini, C., Brescia, R., Falqui, A. & Comparelli, R. 2015. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange. Science and Technology of Advanced Materials 16(5): 1-10.

Fomin, V.M., Gladilin, V.N., Devreese, J.T., Pokatilov, E.P., Balaban, S.N. & Klimin, S.N. 1998. Photoluminescence of spherical quantum dots. Physical Review B 57(4): 2415-2425.

Gao, F. 2011. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires. Applied Physics Letter 98(193105): 3-6.

Gruning, H., Kohary, K., Baranovskii, S.D., Rubel, O., Klar, P.J. & Ramakrishnan, A. 2004. Hopping relaxation of excitons in GaInNAs/GaNAs quantum wells. Physics States Solid 112(1): 109-112.

Guchhait, A., Rath, A.K. & Pal, A.J. 2011. To make polymer: Quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. Solar Energy Materials and Solar Cells 95(2): 651-656.

Hasbullah, N.F., Ng, J.S., Liu, H., Hopkinson, M., David, J.P.R., Badcock, T.J. & Mowbray, D.J. 2009. Dependence of the electroluminescence on the spacer layer growth temperature of multilayer quantum-dot laser structures. IEEE Journal of Quantum Electronics 45(1): 79-85.

Iacovo, A., Venettacci, C., Colace, L., Scopa, L. & Foglia, S. 2016. PbS colloidal quantum dot photodetectors operating in the near infrared. Nature Publishing Group 6: 1-9.

Jin, S., Zheng, Y., Li, A., Jin, S., Zheng, Y. & Li, A. 1997. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures. Journal Applied Physics 82(8): 3870-3873.

Klotz, F., Jovanov, V., Kierig, J., Clark, E.C., Rudolph, D., Heiss, D. & Bichler, M. 2010. Observation of an electrically tunable exciton gfactor in InGaAs/GaAs quantum dots. Applied Physics Letter 96: 053113.

Litvyak, V.M., Cherbunin, R.V. & Onushchenko, A.A. 2017. Temperature dependence of the optical transitions of PbS quantum dots in silicate glasses. Bulletin of the Russian Academy of Sciences: Physics 81(12): 1490-1492.

Liu, Y., Kim, D., Morris, O.P., Zhitomirsky, D. & Grossman, C. 2018. Origins of the Stokes shift in PbS quantum dots. ACS Nano 12: 2838-2845.

Marshall, A.R., Beard, M.C. & Johnson, J.C. 2016. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films. Chemical Physics 471: 75-80.

Martini, S., Teles, L.K., Marques, M., Marques, A.E.B. & Quivy, A.A. 2011. Radiative recombination mechanisms of large InAs/GaAs quantum dots. World Journal of Condensed Matter Physics 1: 161-166.

Moreels, I., Lambert, K., Smeets, D., Muynck, D.D., Nollet, T., Martins, C., Vanhaecke, F., Delerue, C., Allan, G. & Hens, Z. 2009. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3(10): 3023-3030.

Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T. & Scherer, A. 2004. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Publishing Group 3: 601-605.

Olkhovets, A., Hsu, R., Lipovskii, A. & Wise, F.W. 1998. Size-dependent temperature variation of the energy gap in lead-salt quantum dots. Physical Review L 81(16): 3539-3542.

Papagiorgis, P., Stavrinadis, A., Othonos, A., Konstantatos, G. & Itskos, G. 2016. The influence of doping on the optoelectronic properties of PbS colloidal quantum dot solids. Nature Publishing Group 6(18735): 1-16.

Peterson, J.J. & Krauss, T.D. 2006. Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Letters 6(3): 510-514.

Rajh, T., Olga, I., Micic, O.I. & Nozik, A.J. 1993. Synthesis and characterization of surface-modified colloidal CdTe quantum dots. The Journal of Physical Chemistry 97(46): 11999.

Reilly, N., Wehrung, M., O’Dell, R.A. & Sun, L. 2014. Ultrasmall colloidal PbS quantum dots. Materials Chemistry and Physics 147: 1-4.

Rogach, A.L., Eychmüller, A., Hickey, S.G. & Kershaw, S.V. 2007. Reviews infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small Journal 4: 536-557.

Ru, E.C.L., Fack, J. & Murray, R. 2003. Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Physical Review B 67: 245318.

Ryu, S., Park, J., Oh, J., Long, D.H., Kwon, K., Kim, Y., Lee, J.K. & Kim, J.H. 2009. Analysis of improved efficiency of InGaN light-emitting diode with bottom photonic crystal fabricated by anodized aluminum oxide. Advanced Functional Materials 19: 1650-1655.

Sargent, E.H. 2005. Infrared quantum dots. Advanced Materials 17(5): 515-522.

Shamsudin, S. & Junas, J. 2018. Kajian terhadap sifat optik titik kuantum kadmium sulfida pada pelbagai nilai pH dan modifikasi permukaan dengan asid tioglikolik. Sains Malaysiana 47(11): 2841-2849.

Szendrei, K., Speirs, M., Gomulya, W., Jarzab, D., Manca, M., Mikhnenko, O.V., Yarema, M., Kooi, B.J., Heiss, W. & Loi, M.A. 2012. Exploring the origin of the temperature-dependent behavior of PbS nanocrystal thin films and solar cells. Advanced Functional Materials 22: 1598-1605.

Tasco, V., Baranov, A. & Satpati, B. 2007. Molecular-beam epitaxy of InSb/GaSb quantum dots. Journal of Applied Physics 101: 124309.

Turyanska, L., Moro, F., Knott, A.N., Fay, M.W., Bradshaw, T.D. & Patanè, A. 2013. Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals. Particle & Particle Systems Characterization 30: 945-949.

Turyanska, L., Elfurawi, U., Li, M., Fay, M.W. & Thomas, N.R. 2009. Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing. Nanotechnology 20: 315604.

Turyanska, L., Patanè, A. & Henini, M. 2007. Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots. Applied Physics Letter 90: 101913.

Varshni, P. 1967. Temperature dependence of the energy gap in semiconductors. Physica 34: 149-154.

Wang, J.S., Smith, H.E. & Brown, G.J. 2015. Stability and aging studies of lead sulfide quantum dot film: Photoabsorption, morphology, and chemical state characteristics. Materials Chemistry and Physics 154: 44-52.

Wise, F.W. 2000. Lead salt quantum dots: The limit of strong quantum confinement. Accounts of Chemical Research 33(11): 773-780.

Yamada, Y., Yasuda, H., Tayagaki, T. & Kanemitsu, Y. 2009. Temperature dependence of photoluminescence spectra of non-doped and electron-doped SrTiO 3: Crossover from Auger recombination to single-carrier trapping. Physical Review Letter 102: 247401.

Yang, L.M., Ye, Z.Z., Zeng, Y.J., Xu, W.Z., Zhu, L.P. & Zhao, B.H. 2006. Density controllable growth of ZnO quantum dots by MOCVD. Solid State Communications 138: 577-579.

Yin, Y. & Alivisatos, A.P. 2005. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437: 664-670.

Yoffe, A.D. 2001. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems. Advances in Physics 50(1): 1-208.

Yu, Y., Zhang, K. & Sun, S. 2013. Effect of ligands on the photoluminescence properties of water-soluble PbS quantum dots. Journal of Molecular Structure 1031: 194-200.

Zhou, S., Liu, Z., Wang, Y., Lu, K., Yang, F., Gu, M., Xu, Y., Chen, S., Ling, X., Zhang, Y., Li, F., Yuan, J. & Ma, W. 2019. Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications. Journal of Materials Chemistry C 7: 1575-1583.

 

*Corresponding author; email: mazliana_ak@upm.edu.my

 

 

previous