Sains Malaysiana 48(6)(2019): 1301–1310
http://dx.doi.org/10.17576/jsm-2019-4806-19
Recent Progress on
Fabrication of Zinc Oxide Nanorod-Based Field Effect Transistor Biosensors
(Kemajuan Terkini Fabrikasi
Biosensor Berasaskan Nanorod Kesan Medan Transistor Zink Oksida)
SITI SHAFURA A KARIM, CHANG-FU DEE, BURHANUDDIN YEOP MAJLIS
& MOHD AMBRI MOHAMED*
Institute of
Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia,43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 20 February
2019/Accepted: 19 March 2019
ABSTRACT
Zinc oxide is a unique
n-type semiconducting material, owing to wide bandgap of ~3.37 eV, non-toxic,
bio-safe and biocompatible with high isoelectric point of ~9.5, make it as
promising biomaterial to be utilized as sensing matrix in biosensor
applications. In addition, ZnO that possess high electron affinity provide a
good conduction pathway for the electrons hence result in significant
electrical signal change upon detection to target biomolecules. Moreover, high
surface area of ZnO nanorod enhance immobilization of enzymes, hence, increase
the device performance. Field effect transistor (FET)-based
biosensor offer simplicity in handling and label-free, has also become research
topic among researchers for novel biosensor development. This review aims to
explore the preparation of ZnO nanorod using hydrothermal method and
investigate the fabrication of ZnO nanorod-based FET biosensor.
Thus, contribute to enhance understanding towards biosensor development for
health monitoring, especially based on FETs structure devices.
Keywords: Biosensor;
field effect transistor; hydrothermal method; zinc oxide nanorod
ABSTRAK
Zink oksida adalah bahan
semikonduktor jenis-n yang unik, disebabkan oleh ketinggian selebar
~3.37 eV, tidak toksik, selamat dan bioserasi dengan titik isoelektrik
yang tinggi ~9.5, menjadikan ia sebagai biobahan yang sesuai digunakan
sebagai matriks penderia dalam aplikasi biosensor. Di samping itu,
ZnO yang mempunyai keafinan elektron yang tinggi memberikan laluan
konduksi yang baik untuk elektron dan mengakibatkan perubahan isyarat
elektrik yang signifikan apabila pengesanan kepada biomolekul sasaran.
Tambahan pula, kawasan permukaan ZnO nanorod yang tinggi meningkatkan
immobilisasi enzim, seterusnya meningkatkan prestasi peranti. Biosensor
berasaskan kesan medan transistor (FET)
adalah mudah dikendalikan dan bebas label, juga menjadi topik penyelidikan
dalam kalangan penyelidik untuk pembangunan biosensor yang novel.
Kajian ini bertujuan untuk meneroka penyediaan ZnO nanorod menggunakan
kaedah hidroterma dan mengkaji fabrikasi biosensor FET yang berasaskan ZnO nanorod.
Sekaligus menyumbang kepada kefahaman tentang pembangunan biosensor
untuk memantau kesihatan, terutamanya yang berasaskan struktur FETs.
Kata kunci: Biosensor; kaedah hidroterma; kesan medan transistor;
zink oksida nanorod
REFERENCES
Agarwal,
D.K., Kandpal, M. & Surya, S.G. 2019. Characterization and detection of
cardiac troponin-t protein by using ‘aptamer’ mediated biofunctionalization of
ZnO thin-film transistor. Applied Surface Science 466: 874-881.
Ahmad,
R., Mahmoudi, T., Ahn, M.S. & Hahn, Y.B. 2018. Recent advances in
nanowires-based field-effect transistors for biological sensor applications. Biosensors
and Bioelectronics 100: 312-325.
Ahmad,
R., Ahn, M.S. & Hahn, Y.B. 2017. ZnO nanorods array based field-effect
transistor biosensor for phosphate detection. Journal of Colloid and
Interface Science 498: 292-297.
Ahmad,
R., Tripathy, N., Jang, N.K., Khang, G. & Hahn, Y.B. 2015a. Fabrication of
highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on
electrode surface. Sensors and Actuators B: Chemical 206: 146-151.
Ahmad,
R., Tripathy, N., Park, J.H. & Hahn, Y.B. 2015b. A comprehensive biosensor
integrated with a ZnO nanorod fet array for selective detection of glucose,
cholesterol and urea. Chemical Communications 51(60): 11968-11971.
Ahmad,
R., Tripathy, N. & Hahn, Y.B. 2013. High-performance cholesterol sensor
based on the solution-gated field effect transistor fabricated with ZnO
nanorods. Biosens Bioelectron 45: 281-286.
Arya,
S.K., Saha, S., Ramirez-Vick, J.E., Gupta, V., Bhansali, S. & Singh, S.P.
2012. Recent advances in ZnO nanostructures and thin films for biosensor
applications: Review. Analytica Chimica Acta 737: 1-21.
Bakar, E.A., Mohamed, M.A., Ooi,
P.C., Wee, M.F.M.R., Dee, C.F. & Majlis, B.Y. 2018. Fabrication of
indium-tin-oxide free, all-solution-processed
flexible nanogenerator device using nanocomposite of barium titanate and
graphene quantum dots in polyvinylidene fluoride polymer matrix. Organic
Electronics 61: 289-295.
Bangbai, C., Chongsri, K., Pecharapa, W. & Techidheera, W.
2013. Effect of Al and N doping on structural and optical properties of sol-gel
derived ZnO thin films. Sains Malaysiana 42(2): 239-246.
Baratto, C. 2018. Growth and properties of ZnO nanorods by
Rf-sputtering for detection of toxic gases. RSC Advances 8(56):
32038-32043.
Bhat, S.S., Qurashi, A. & Khanday, F.A. 2017. Zno
nanostructures based biosensors for cancer and infectious disease applications:
Perspectives, prospects and promises. TrAC Trends in Analytical Chemistry 86:
1-13.
Chen, Y., Ren, R., Pu, H., Guo, X., Chang, J., Zhou, G., Mao, S.,
Kron, M. & Chen, J. 2017. Field-effect transistor biosensor for rapid
detection of ebola antigen. Scientific Reports 7(1): 10974.
Cheng, J.J., Nicaise, S.M., Berggren, K.K. & Gradečak, S.
2016. Dimensional tailoring of hydrothermally grown zinc oxide nanowire arrays. Nano Letters 16(1): 753-759.
Cheng, S., Hideshima, S., Kuroiwa, S., Nakanishi, T. & Osaka,
T. 2015. Label-free detection of tumor markers using field effect transistor
(Fet)-based biosensors for lung cancer diagnosis. Sensors and Actuators B:
Chemical 212: 329-334.
Ching, C., Ooi, P., Ng, S., Hassan, Z., Hassan, H. & Abdullah,
M. 2014. Structural properties of zinc oxide thin films deposited on various
substrates. Sains Malaysiana 43(6): 923-927.
Clark, J.L.C. & Lyons, C. 1962. Electrode systems for
continuous monitoring in cardiovascular surgery. Annals of the New York
Academy of Sciences 102(1): 29-45.
Dedova, T., Acik, I.O., Polivtseva, S., Krunks, M., Gromyko, I.,
Tõnsuaadu, K. & Mere, A. 2019. Influence of solution composition on sprayed
Zno nanorods properties and formation process: Thermoanalytical study of the
precursors. Ceramics International 45(2): 2887-2892.
Ditshego, N.M.J. 2018. Highly sensitive ZnO NWFET biosensor
fabricated using top-down processes. Journal of Nano Research 55: 66-74.
Fathollahzadeh, M., Hosseini, M., Norouzi, M., Ebrahimi, A.,
Fathipour, M., Kolahdouz, M. & Haghighi, B. 2018. Immobilization of glucose
oxidase on ZnO nanorods decorated electrolyte-gated field effect transistor for
glucose detection. Journal of Solid State Electrochemistry 22(1): 61-67.
Gaiardo, A., Fabbri, B., Giberti, A., Guidi, V., Bellutti, P.,
Malagù, C., Valt, M., Pepponi, G., Gherardi, S., Zonta, G., Martucci, A.,
Sturaro, M. & Landini, N. 2016. Zno and Au/Zno thin films: Room-temperature
chemoresistive properties for gas sensing applications. Sensors and
Actuators B: Chemical 237: 1085-1094.
Galdamez, A., Serrano, A., Santana, G., Arjona, N., Arriaga, L.G.,
Tapia Ramirez, J., Oza, G. & Dutt, A. 2019. DNA probe functionalization on
different morphologies of Zno/ Au nanowire for bio-sensing applications. Materials
Letters 235: 250-253.
Gao, S.Y., Li, H.D., Yuan, J.J., Li, Y.A., Yang, X.X. & Liu,
J.W. 2010. ZnO nanorods/plates on Si substrate grown by low-temperature
hydrothermal reaction. Applied Surface Science 256(9): 2781-2785.
Gao, Z., Zhang, J., Li, J., Xue, X., Zhao, L., Lu, L., Deng, J.,
Wan, P., Cui, B. & Zou, D. 2018. Improving the fabrication uniformity of
ZnO nanowire UV sensor by step-corner growth mode. Ceramics International 44(11):
11972-11982.
Garrote, B.L., Fernandes, F.C.B., Cilli, E.M. & Bueno, P.R.
2019. Field effect in molecule-gated switches and the role of
target-to-receptor size ratio in biosensor sensitivity. Biosensors and
Bioelectronics 127: 215-220.
Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C.,
Zhang, Y., Saykally, R.J. & Yang, P. 2003. Low-temperature wafer-scale
production of ZnO nanowire arrays. Angewandte Chemie International Edition 42(26):
3031-3034.
Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J.,
Somorjai, G. & Yang, P. 2005. General route to vertical ZnO nanowire arrays
using textured ZnO seeds. Nano Letters 5(7): 1231-1236.
Hassanpour, A., Bogdan, N., Capobianco, J.A. & Bianucci, P.
2017. Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Materials
& Design 119: 464-469.
He, J., Zheng, X., Hong, X., Wang, W., Cao, Y., Chen, T., Kong,
L., Wu, Y., Wu, Z. & Kang, J. 2018. Enhanced field emission of ZnO nanowire
arrays by the control of their structures. Materials Letters 216:
182-184.
Ismail, A.S., Mamat, M.H., Md. Sin, N.D., Malek, M.F., Zoolfakar,
A.S., Suriani, A.B., Mohamed, A., Ahmad, M.K. & Rusop, M. 2016. Fabrication
of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol-gel immersion
for room temperature, resistive-type humidity sensor applications. Ceramics
International 42(8): 9785-9795.
Jeong, Y.I., Shin, C.M., Heo, J.H., Ryu, H., Lee, W.J., Chang,
J.H., Son, C.S. & Yun, J. 2011. Effects of growth duration on the
structural and optical properties of ZnO nanorods grown on seed-layer
ZnO/polyethylene terephthalate substrates. Applied Surface Science 257(24):
10358-10362.
Kaisti, M. 2017. Detection principles of biological and chemical
fet sensors. Biosensors and Bioelectronics 98: 437-448.
Khan, M.I., Bhatti, K.A., Qindeel, R., Alonizan, N. &
Althobaiti, H.S. 2017. Characterizations of multilayer ZnO thin films deposited
by sol-gel spin coating technique. Results in Physics 7: 651-655.
Khayatian, A., Asgari, V., Ramazani, A., Akhtarianfar, S.F.,
Kashi, M.A. & Safa, S. 2017. Diameter-controlled synthesis of ZnO nanorods
on Fe-doped ZnO seed layer and enhanced photodetection performance. Materials
Research Bulletin 94: 77-84.
Kim, Y.G., Tak, Y.J., Kim, H.J., Kim, W.G., Yoo, H. & Kim,
H.J. 2018. Facile fabrication of wire-type indium gallium zinc oxide thin-film
transistors applicable to ultrasensitive flexible sensors. Scientific
Reports 8(1): 5546.
Li, D., Li, Y., Zhang, Y. & Chang, F. 2019. Facile synthesis
of three-dimensional Zno hierarchical microspheres composed of well-ordered
nanorods by hydrothermal method. Results in Physics 12: 953-958.
Long, T., Yin, S., Takabatake, K., Zhnag, P. & Sato, T. 2008.
Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride
aqueous solution. Nanoscale Research Letters 4(3): 247.
Mahmood, K., Hameed, M., Rehman, F., Khalid, A., Imran, M. &
Mehran, M.T. 2019. A multifunctional blade-coated ZnO seed layer for
high-efficiency perovskite solar cells. Applied Physics A 125(2): 83.
Mahmoud, A., Echabaane,
M., Omri, K., El Mir, L. & Ben Chaabane, R. 2019. Development of an
impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles
for the detection of glucose. Journal of Alloys and Compounds 786:
960-968.
Medawar-Aguilar, V.,
Jofre, C.F., Fernández-Baldo, M.A., Alonso, A., Angel, S., Raba, J., Pereira,
S.V. & Messina, G.A. 2019. Serological diagnosis of toxoplasmosis disease
using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Analytical
Biochemistry 564-565: 116-122.
Mohammed, A.J. &
Hassan, T.A.A. 2019. A new piezo-amperometric sensing method based on comb-like
nanostructured zinc oxide thin films for the efficient detection of Na2So4. Energy
Procedia 157: 1191-1201.
Mohammed, A.M.,
Ibraheem, I.J., Obaid, A.S. & Bououdina, M. 2017. Nanostructured ZnO-based
biosensor: DNA immobilization and hybridization. Sensing and Bio-Sensing
Research 15: 46-52.
Park, J.S., Mahmud, I.,
Shin, H.J., Park, M.K., Ranjkesh, A., Lee, D.K. & Kim, H.R. 2016. Effect of
surface energy and seed layer annealing temperature on Zno seed layer formation
and ZnO nanowire growth. Applied Surface Science 362: 132-139.
Resmini, A.,
Anselmi-Tamburini, U., Emamjomeh, S.M., Paolucci, V., Tredici, I.G. &
Cantalini, C. 2016. The influence of the absolute surface area on the No2 and
H2 gas responses of ZnO nanorods prepared by hydrothermal growth. Thin Solid
Films 618: 246-252.
Ridhuan, N.S., Abdul
Razak, K. & Lockman, Z. 2018. Fabrication and characterization of glucose
biosensors by using hydrothermally grown Zno nanorods. Scientific Reports 8(1):
13722.
Saranya, P.E. &
Selladurai, S. 2017. Facile synthesis of self-assembled flower-like mesoporous
zinc oxide nanoflakes for energy applications. International Journal of
Nanoscience 17(01n02): 1760002.
Shafura, A.K., Saurdi,
I., Sin, N.D.M., Noor, U.M., Mamat, M.H., Alrokayan, S.A.H., Khan, H.A. &
Rusop, M. 2018. Structural and electrical properties of nanostructured ZnO. AIP
Conference Proceedings 1963(1): 020052.
Shafura, A.K., Saurdi,
I., Sin, N.D.M., Noor, U.M., Mamat, M.H., Alrokayan, S.a.H., Khan, H.A. &
Rusop, M. 2018. Structural properties of Zno nano-template layer by spin
coating method. AIP Conference Proceedings 1963(1): 020034.
Sihar, N., Tiong, T.Y.,
Dee, C.F., Ooi, P.C., Hamzah, A.A., Mohamed, M.A. & Majlis, B.Y. 2018.
Ultraviolet light-assisted copper oxide nanowires hydrogen gas sensor. Nanoscale
Research Letters 13(1): 150.
Singh, A.C., Asif, M.H.,
Bacher, G., Danielsson, B., Willander, M. & Bhand, S. 2019a.
Nanoimmunosensor based on ZnO nanorods for ultrasensitive detection of
17β-estradiol. Biosensors and Bioelectronics 126: 15-22.
Singh, N.K., Thungon,
P.D., Estrela, P. & Goswami, P. 2019b. Development of an aptamer-based
field effect transistor biosensor for quantitative detection of plasmodium
falciparum glutamate dehydrogenase in serum samples. Biosensors and
Bioelectronics 123: 30-35.
Syu, Y.C., Hsu, W.E.
& Lin, C.T. 2018. Review-Field-effect transistor biosensing: Devices and
clinical applications. ECS Journal of Solid State Science and Technology 7(7):
Q3196-Q3207.
Tripathy, N. & Kim,
D.H. 2018. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano
Convergence 5(1): 27-37.
Yu, Z., Li, H., Qiu, Y.,
Yang, X., Zhang, W., Xu, N., Sun, J. & Wu, J. 2017. Size-controllable
growth of Zno nanorods on Si substrate. Superlattices and Microstructures 101:
469-479.
Yue, H.Y., Song, S.S.,
Guo, X.R., Huang, S., Gao, X., Wang, Z., Wang, W.Q., Zhang, H.J. & Wu, P.F.
2019a. Three- Dimensional ZnO nanosheet spheres/graphene foam for
electrochemical determination of levodopa in the presence of uric acid. Journal
of Electroanalytical Chemistry 838: 142-147.
Yue, H.Y., Wu, P.F.,
Huang, S., Gao, X., Wang, Z., Wang, W.Q., Zhang, H.J., Song, S.S. & Guo,
X.R. 2019b. Electrochemical determination of levodopa in the presence of uric
acid using ZnO nanoflowers-reduced graphene oxide. Journal of Materials
Science: Materials in Electronics 30(4): 3984- 3993.
Yun, S., Lee, J., Yang,
J. & Lim, S. 2010. Hydrothermal synthesis of Al-doped ZnO nanorod arrays on
Si substrate. Physica B: Condensed Matter 405(1): 413-419.
Zhai, Y., Liu, D.,
Jiang, Y., Chen, X., Shao, L., Li, J., Sheng, K., Zhang, X. & Song, H.
2019. Near-infrared-light-triggered photoelectrochemical biosensor for
detection of alpha-fetoprotein based on upconversion nanophosphors. Sensors
and Actuators B: Chemical 286: 468-475.
Zhang, Z., Chen, Y.
& Guo, J. 2019. ZnO nanorods patterned-textile using a novel hydrothermal
method for sandwich structured-piezoelectric nanogenerator for human energy
harvesting. Physica E: Low-Dimensional Systems and Nanostructures 105:
212-218.
Zong, X. & Zhu, R.
2018. ZnO nanorod-based fet biosensor for continuous glucose monitoring. Sensors
and Actuators B: Chemical 255: 2448-2453.
*Corresponding
author; email: ambri@ukm.edu.my
|