Sains Malaysiana 48(7)(2019): 1447–1457
http://dx.doi.org/10.17576/jsm-2019-4807-14
Chemical Surface
Analysis on Post-Thermal Treatment of the K-OMS-2 Catalysts and Catalytic
Oxidation Efficiency at Low Temperature
(Analisis Permukaan
Kimia Rawatan Pasca Haba pada Mangkin K-OMS-2 dan
Kecekapan Pemangkinan Pengoksidaan pada Suhu Rendah)
CHATKAMOL KAEWBUDDEE1,2,
PINIT
KIDKHUNTHOD3,
NARONG
CHANLEK3,
RATTABAL
KHUNPHONOI2,4,5
& KITIROTE WANTALA1,2,5,6*
1Department of Chemical
Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
2Chemical Kinetics and
Applied Catalysis Laboratory (CKCL), Faculty of Engineering, Khon Kaen
University, Khon Kaen 40002, Thailand
3Synchrotron Light
Research Institute Public Organization, 111 University Avenue, Muang District, Nakhon
Ratchasima, 30000, Thailand
4Department of
Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon
Kaen 40002, Thailand
5Research Center for
Environmental and Hazardous Substance Management (EHSM), Faculty of Engineering,
Khon Kaen University, Khon Kaen 40002, Thailand
6Research Program on
Development of Appropriate Technologies for Coloring Agent Removal from, Textile
Dyeing, Pulp & Paper, Sugar Industries for Sustainable Management, Center
of Excellence on Hazardous Substance Management (HSM), Chulalongkorn
University, Bangkok 10330, Thailand
Received:
18 December 2018/Accepted: 24 April 2019
ABSTRACT
The effect of
calcination temperature on the physical and chemical properties of cryptomelane
(K-OMS-2) was investigated. The K-OMS-2
was synthesized via a hydrothermal method and calcined at 200-600ºC. The
catalytic activities of the K-OMS-2 samples were tested in packed bed reactor (PBR)
on toluene oxidation. The physical and chemical properties were characterized
by X-ray diffractometer (XRD), scanning electron microscopy (SEM),
specific surface area computed by Brunauer-Emmett-Teller (BET)
equation, Fourier-transform infrared spectroscopy (FTIR),
X-ray photoelectron spectroscopy (XPS) and X-ray absorption near
edge structure (XANES) techniques. The increasing of
the calcination temperature from 200-600ºC led to transform the phases from MnO2 to
Mn2O3. The morphology of K-OMS-2
which observed in a nest-like type could promote the catalytic activity. With
increasing the calcination temperature, the amount of Oads/Olatt molar ratio slightly increased whereas OH vibrations
analyzed by FTIR insignificantly increased. The comparison of
interaction effect indicated that the Oads/Olatt molar
ratio played an important role in the oxidation performance more than the Mn3+/Mn4+ molar
ratio.
Keywords: Oxidation
state; thermal catalysis; toluene oxidation; VOCs
removal; XPS
ABSTRAK
Kesan suhu pengkalsinan
pada sifat fizikal dan kimia (K-OMS-2) kriptomelan telah
dikaji. K-OMS-2 telah disintesis melalui kaedah hidroterma dan
dikalsin pada suhu 200-600ºC. Aktiviti sampel pemangkin K-OMS-2
diuji dalam reaktor lapisan terpadat (PBR) pada pengoksidaan toluena.
Sifat fizikal dan kimia telah dicirikan oleh teknik sinar-x difraktometer (XRD),
mikroskop elektron imbasan (SEM), kawasan permukaan
tertentu yang dihitung melalui persamaan Brunauer-Emmett-Teller (BET),
spektroskopi transformasi Fourier inframerah (FTIR),
spektroskopi fotoelektron sinar-x (XPS) dan ujian penyerapan
sinar- x berhampiran pinggir struktur (XANES). Peningkatan suhu
pengkalsinan daripada 200-600ºC membawa kepada perubahan daripada MnO2 kepada
Mn2O3. Morfologi K-OMS-2
yang diperhatikan seperti jenis sarang dapat menggalakkan aktiviti pemangkinan.
Dengan pertambahan suhu pengkalsinan, jumlah nisbah molar Oads/Olatt sedikit meningkat manakala getaran OH dianalisis FTIR meningkat secara tidak bererti. Perbandingan kesan interaksi
menunjukkan bahawa nisbah molar Oads/Olatt memainkan
peranan penting dalam prestasi pengoksidaan lebih daripada nisbah molar Mn3 +/Mn4 +.
Kata kunci: Keadaan pengoksidaan; pemangkin termal; pengoksidaan
toluena; penyingkiran VOC; XPS
REFERENCES
Brock, S.L., Duan, N., Tian, Z.R., Giraldo, O., Hua, Z. & Suib,
S.L. 1998. A review of porous manganese oxide materials. Chemistry of
Materials 10(10): 2619-2628.
Calvert, C., Joesten, R., Ngala, K., Villegas, J., Morey, A.,
Shen, X. & Suib S.L. 2008. Synthesis, characterization, and rietveld
refinement of tungsten-framework-doped porous manganese oxide (K-OMS-2)
material. Chemistry of Materials 20(20): 6382-6388.
Chen, T., Dou, H., Li, X., Tang, X., Li, J. & Hao, J. 2009.
Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde. Microporous and Mesoporous Materials 122(1-3): 270-274.
Chen, X., Shen, Y.F., Suib, S.L. & O'Young, C.L. 2002 Characterization
of manganese oxide octahedral molecular sieve (M-OMS-2) materials
with different metal cation dopants. Chemistry of Materials 14(2):
940-948.
Christel, L., Pierre, A. & Abel, D.A.M.R. 1997. Temperature
programmed reduction studies of nickel manganite spinels. Thermochimica Acta 306(1-2): 51-59.
Cockayne, E., Levin, I., Wu, H. & Llobet, A. 2013. Magnetic
structure of bixbyite a-Mn2O3: A combined DET+U and neutron diffraction study. Physical
Review B 87(18): 184413.
De Luna, M.D., Millanar, J., Yodsa-nga, A. & Wantala, K.,
2017. Gas phase catalytic oxidation of VOCS using hydrothermally synthesized
nest-like K-OMS 2 catalyst. Sains Malasiana 46(2): 275-283.
Deng, Y.Q., Zhang, T., Au, C.T. & Yin, S.F. 2014. Oxidation of
p-chlorotoluene to p-chlorobenzaldehyde over manganese-based octahedral
molecular sieves of different morphologies. Catalysis Communications 43:
126-130.
Dong, C.,
Liu, X., Guan, H., Xiao, X. & Wang, Y. 2017. Combustion synthesized
hierarchically porous Mn3O4 for
catalytic degradation of methyl orange. The Canadian Journal of Chemical
Engineering 95(4): 643-647.
Doucet, N., Bocquillon, F., Zahraa, O. & Bouchy, M. 2006.
Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere 65(7): 1188-1196.
El-Sawy, A.M., King’ondu, C.K., Kuo, C.H., Kriz, D.A., Guild,
C.J., Meng, Y., Frueh, S.J., Dharmarathna, S., Ehrlich, S.N. & Suib, S.L.
2014. X-ray absorption spectroscopic study of a highly thermally stable
manganese oxide octahedral molecular sieve (OMS-2) with high oxygen reduction
reaction activity. Chemistry of Materials 26(19): 5752-5760.
Fang, J., Li, J., Gao, L., Jiang, X., Zhang, J, Xu, A. & Li,
X. 2017. Synthesis of OMS-2/graphite nanocomposites with enhanced activity for
pollutants degradation in the presence of peroxymonosulfate. Journal of
Colloid and Interface Science 494: 185-193.
Feng, Q., Kanoh, H. & Ooi, K. 1999. Manganese oxide porous
crystals. Journal of Materials Chemistry 9(2): 319-333.
Fu, Z., Liu, L., Song, Y., Ye, Q., Cheng, S., Kang, T. & Dai,
H. 2017. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate
over the xPd/OMS-2 catalysts: Effect of Pd loading. Frontiers of Chemical
Science and Engineering 11(2): 185-196.
Gandhe, A.R., Rebello, J.S., Figueiredo, J.L. & Fernandes,
J.B. 2007. Manganese oxide OMS-2 as an effective catalyst for total oxidation
of ethyl acetate. Applied Catalysis B: Environmental 72(1-2): 129-135.
Genuino, H.C., Meng, Y., Horvath, D.T., Kuo, C.H., Seraji, M.S.,
Morey, A.M., Joesten, R.L. & Suib, S.L. 2013. Enhancement of catalytic
activities of octahedral molecular sieve manganese oxide for total and
preferential CO oxidation through vanadium ion framework substitution. ChemCatChem 5(8): 2306-2317.
Ghosh, R., Shen, X., Villegas, J.C., Ding, Y., Malinger, K. &
Suib, S.L. 2006. Role of manganese oxide octahedral molecular sieves in styrene
epoxidation. The Journal of Physical Chemistry B 110(14): 7592-7599.
Hou, J., Li, Y., Mao, M., Zhao, X. & Yue, Y. 2014. The effect
of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene
oxidation. Nanoscale 6(24): 15048-15058.
Hou, J., Li, Y., Liu, L., Ren, L. & Zhao, X. 2013a. Effect of
giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. Journal
of Materials Chemistry A 1(23): 6736-6741.
Hou, J., Liu, L., Li, Y., Mao, M., Lv, H. & Zhao, X. 2013b. Tuning
the K+ concentration in the tunnel of OMS-2 nanorods leads to
a significant enhancement of the catalytic activity for benzene
oxidation. Environmental Science & Technology 47(23):
13730-13736.
Iyer, A., Galindo, H., Sithambaram, S., King'ondu, C., Chen, C.H.
& Suib, S.L. 2010. Nanoscale manganese oxide octahedral molecular
sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation.
Applied Catalysis A: General 375(2): 295-302.
Jia, J., Zhang, P. & Chen, L. 2016. The effect of morphology
of α-MnO2 on catalytic decomposition of gaseous ozone. Catalysis
Science & Technology 6(15): 5841-5847.
King'ondu, C.K., Opembe, N., Chen, C.H., Ngala, K., Huang, H., Iyer,
A., Garces, H.F. & Suib, S.L. 2011. Manganese oxide octahedral
molecular sieves (OMS-2) multiple framework substitutions: A new
route to OMS-2 particle size and morphology control. Advanced
Functional Materials 21(2): 312-323.
Kowalski, J. & DeBeer, S. 2015 The role of X-ray spectroscopy
in understanding the geometric and electronic structure of nitrogenase. Biochimica
et Biophysica Acta 1853(6): 1406- 1415.
Kumar, R., Sithambaram, S. & Suib, S.L. 2009. Cyclohexane
oxidation catalyzed by manganese oxide octahedral molecular sieves - Effect of
acidity of the catalyst. Journal of Catalysis 262(2): 304-313.
Li, D.Y., Liu, H.D. & Chen, Y.F. 2011. Synthesis of manganese
oxide octahedral molecular sieve and their application in catalytic oxidation
of benzene. Huan Jing Ke Xue= Huanjing Kexue 32(12): 3657-3661.
Liu, L., Song, Y., Fu, Z., Ye, Q., Cheng, S., Kang, T. & Dai,
H. 2017. Effect of preparation method on the surface characteristics and
activity of the Pd/OMS-2 catalysts for the oxidation of carbon monoxide,
toluene, and ethyl acetate. Applied Surface Science 396: 599-608.
Luo, J., Zhang, Q., Huang, A. & Suib, S.L. 2000. Total
oxidation of volatile organic compounds with hydrophobic cryptomelane-type
octahedral molecular sieves. Microporous and Mesoporous Materials 35-36:
209-217.
Mahdavi, V. & Soleimani, S. 2014. Novel synthesis of manganese
and vanadium mixed oxide (V2O5/OMS-2)
as an efficient and selective catalyst for the oxidation of alcohols in liquid
phase. Materials Research Bulletin 51: 153-160.
Millanar, J.M., De Luna, M.D.G., Yodsa-Nga, A. & Wantala, K.
2018. Toluene oxidation using K-OMS-2 synthesized via hydrothermal process by
central composite design. Chiang Mai Journal of Science 45(2):
1030-1038.
Mosa, I.M., Biswas, S., El-Sawy, A.M., Botu, V., Guild, C., Song,
W., Ramprasad, R., Rusling, J. & Suib, S.L. 2015. Tunable mesoporous
manganese oxide for high performance oxygen reduction and evolution reactions. Journal
of Materials Chemistry A 4(2): 620-631.
Ousmane, M., Perrussel, G., Yan, Z., Clacens, J.M., De Campo, F.
& Pera-Titus, M. 2014. Highly selective direct amination of primary
alcohols over a Pd/K-OMS-2 catalyst. Journal of Catalysis 309: 439-452.
Pan, F., Liu, W., Yu, Y., Yin, X., Wang, Q., Zheng, Z., Wu, M.,
Zhao, D., Zhang, Q., Lei, X. & Xia, D. 2016. The effects of manganese oxide
octahedral molecular sieve chitosan microspheres on sludge bacterial community
structures during sewage biological treatment. Scientific Reports 6(1):
37518.
Said, S., Maghrabi, H.H.E., Riad, M. & Mikhail, S. 2018.
Photo-catalytic selective organic transformations by Fe-doped octahedral
molecular sieves (manganese oxide) nano-structure. Journal of Asian Ceramic
Societies 6(2): 169-181.
Said, S., Riad, M., Helmy, M., Mikhail, S. & Khalil, L. 2016.
Preparation of nano-structured cryptomelane materials for catalytic oxidation
reactions. Journal of Nanostructure in Chemistry 6(2): 171-182.
Said, S., Riad, M., Helmy, M., Mikhail, S. & Khalil, L. 2014.
Effect of the different preparation methods on the characterization and the
catalytic activity of the nano-structured cryptomelane materials. Chemistry
and Materials Research 6(12): 27-41.
Santos, V.P., Bastos, S.S.T., Pereira, M.F.R., Orfao, J.J.M. &
Figueiredo, J.L. 2010. Stability of a cryptomelane catalyst in the oxidation of
toluene. Catalysis Today 154(3-4): 308-311.
Schurz, F.,
Bauchert, J.M., Merker, T., Schleid, T., Hasse, H. & Glaser, R. 2009.
Octahedral molecular sieves of the type K-OMS-2 with different particle sizes
and morphologies: Impact on the catalytic properties in the aerobic partial
oxidation of benzyl alcohol. Applied Catalysis A: General 355(1-2):
42-49.
Shi, F., Wang, F., Dai,
H., Dai, J., Deng, J., Liu, Y., Bai, G., Ji, K. & Au, C.T. 2012. Rod-,
flower-, and dumbbell-like MnO2: Highly active catalysts for the combustion of
toluene. Applied Catalysis A: General 433-434: 206-213.
Shanthakumar, S., Xu,
L., Chen, C.H., Ding, Y., Kumar, R., Calvert, C. & Suib, S.L. 2009.
Manganese octahedral molecular sieve catalysts for selective styrene oxide ring
opening. Catalysis Today 140(3-4):
162-168.
Soares, O.S.G.P., Rocha,
R.P., Orfao, J.J.M., Pereira, M.F.R. & Figueiredo, J.L. 2018. Ethyl and
butyl acetate oxidation over manganese oxides. Chinese Journal of Catalysis 39(1): 27-36.
Stobbe, E.R., de Boer,
B.A. & Geus, J.W. 1999. The reduction and oxidation behaviour of manganese
oxides. Catalysis Today 47(1-4):
161-167.
Suib, S.L. 2008.
Structure, porosity, and redox in porous manganese oxide octahedral layer and
molecular sieve materials. Journal of
Materials Chemistry 18(14): 1623-1631.
Sun, H., Liu, Z., Chen,
S. & Quan, X. 2015. The role of lattice oxygen on the activity and
selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chemical Engineering Journal 270: 58-65.
Sun, H., Chen, S., Wang,
P. & Quan, X. 2011. Catalytic oxidation of toluene over manganese oxide
octahedral molecular sieves (OMS-2) synthesized by different methods. Chemical Engineering Journal 178:
191-196.
Sun, L., Cao, Q., Hu,
B., Li, J., Hao, J., Jing, G. & Tang, X. 2011. Synthesis, characterization
and catalytic activities of vanadium-cryptomelane manganese oxides in
low-temperature NO reduction with NH3. Applied
Catalysis A: General 393(1-2): 323-330.
Sun, M., Zhang, B., Liu,
H., He, B., Ye, F., Yu, L., Sun, C. & Wen, H. 2017. The effect of acid/alkali
treatment on the catalytic combustion activity of manganese oxide octahedral
molecular sieves. RSC Advances 7(7):
3958-3965.
Tang, X., Li, J. &
Hao, J. 2010. Significant enhancement of catalytic activities of manganese
oxide octahedral molecular sieve by marginal amount of doping vanadium. Catalysis Communications 11(10):
871-875.
Wang, C., Ma, J., Liu,
F., He, H. & Zhang, R. 2015. The effects of Mn2+ precursors on the
structure and ozone decomposition activity of cryptomelane-type manganese oxide
(OMS-2) catalysts. The Journal of
Physical Chemistry C 119(40): 23119-23126.
Wang, R. & Li, J.
2010. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of
ethanol and acetaldehyde at low temperatures. Environmental Science & Technology 44(11): 4282-4287.
Wang, R. & Li, J.
2009. OMS-2 catalysts for formaldehyde oxidation: Effects of Ce and Pt on
structure and performance of the catalysts. Catalysis
Letters 131(3-4): 500-505.
Xie, Y., Guo, Y., Guo,
Y., Wang, L., Zhan, W., Wang, Y., Gong, X. & Lu, G. 2016. A highly
effective Ni-modified MnOx catalyst for total oxidation of propane: The
promotional role of nickel oxide. RSC
Advances 6(55): 50228-50237.
Yang, X., Han, J., Du,
Z., Yuan, H., Jin, F. & Wu, Y. 2010. Effect of Pb dopant on structure and
activity of Pd/K-OMS-2 catalysts for heterogeneous oxidative carbonylation of
phenol. Catalysis Communications 11(7): 643-646.
Yin, H., Dai, X., Zhu,
M., Li, F., Feng, X. & Liu, F. 2015. Fe-doped cryptomelane synthesized by
refluxing at atmosphere: Structure, properties and photocatalytic degradation
of phenol. Journal of Hazardous Materials 296: 221-229.
Yodsa-nga, A., Millanar,
J.M., Neramittagapong, A., Khemthong, P. & Wantala, K. 2015. Effect of
manganese oxidative species in as-synthesized K-OMS-2 on the oxidation of
benzene. Surface and Coatings Technology 271: 217-224.
Yu, L., Diao, G., Ye,
F., Sun, M., Zhou, J., Li, Y. & Liu, Y. 2011. Promoting effect of Ce in
Ce/OMS-2 catalyst for catalytic combustion of dimethyl ether. Catalysis
Letters 141(1): 111-119.
Yu, L., Sun, M., Yu, J.,
Yu, Q., Hao, Z. & Li, C. 2008. Synthesis and characterization of manganese
oxide octahedral molecular sieve and its catalytic performance for DME
combustion. Chinese Journal of Catalysis 29(11): 1127-1132.
Zhang, Q., Wang, M.,
Zhang, T., Wang, Y., Tang, X. & Ning, P. 2015. A stable Ni/SBA-15 catalyst
prepared by the ammonia evaporation method for dry reforming of methane. RSC
Advances 5(114): 94016-94024.
Zhang, T., Liu, J. &
Sun, D.D. 2012. A novel strategy to fabricate inorganic nanofibrous membranes
for water treatment: Use of functionalized graphene oxide as a cross linker. RSC
Advances 2(12): 5134-5137.
*Corresponding author; email: kitirote@kku.ac.th
|