Sains Malaysiana 48(7)(2019): 1503–1511

http://dx.doi.org/10.17576/jsm-2019-4807-19

 

The Association of ICAM-1 Detected by Immunohistochemical Staining with Triple Negative and Non-Triple Negative Breast Carcinoma

(Perkaitan ICAM-1 Dikesan oleh Pewarnaan Imunohistokimia dengan Karsinoma Payudara Ganda Tiga Negatif dan Bukan-Ganda Tiga Negatif)

 

CHONG CHOI YEN & SABREENA SAFUAN*

 

School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan Darul Naim, Malaysia

 

Received: 29 July 2018/Accepted: 2 May 2019

 

ABSTRACT

Metastasis of tumour cell greatly contributes to the cause of mortality. Tumour-associated macrophage (TAM) and the intercellular adhesion molecule 1 (ICAM-1) were associated with metastases of breast carcinoma. However, the relationship between lymphatic vessel densities and invasion with TAM and ICAM-1 remained unclear. The aim of this study was to investigate the relationship of lymphovascular densities and invasions with patient’s clinicopathological data. The roles of TAM and ICAM-1 influencing lymphovascular invasions were also investigated. Haematoxylin and eosin (H&E) and immunohistochemical (IHC) staining on a consecutive section of 37 formalin fixed-paraffin embedded (FFPE) breast invasive carcinoma samples were carried out. The D2-40, CD34, CD163, and ICAM-1 antibodies were used to stain lymphatic vessel, blood vessel, TAM, and ICAM-1 receptor, respectively. The total lymphatic vessel density (LVD) was significantly reduced on increased tumor size (p=0.045). The increase of intra-tumoral LVD and lymphatic vessel invasion (LVI) was significantly associated with human epidermal growth factor receptor 2 (HER2) negative status (p=0.022 and p=0.05, respectively). The percentage of LVI was higher than blood vessel invasion (BVI) in 18.5%. Lymphovascular invasions detected in H&E were missed in 49.76% compared with those detected in IHC-stained tissues (206/410). ICAM-1 scores were significantly associated with non-triple negative breast cancer (non-TNBC) (p=0.008). ICAM-1 is significantly overexpressed on non-TNBC sample. Therefore, ICAM-1 might be clinically useful as a targeted molecule for non-TNBC patients. In histological reporting, in addition to H&E staining, IHC staining using D2-40 and CD34 should be considered to increase the accuracy of diagnosis.

 

Keywords: Breast carcinoma; CD34; D2-40; ICAM-1; lymphovascular invasion

 

ABSTRAK

Metastasis sel tumor menyumbang kepada mortaliti. Makrofaj berkaitan tumor (TAM) dan molekul lekatan antara sel 1 (ICAM-1) dikaitkan dengan metastasis karsinoma payudara. Walau bagaimanapun, hubungan antara ketumpatan dan pencerobohan saluran limfa oleh TAM dan ICAM-1 masih tidak jelas. Tujuan kajian ini adalah untuk mengkaji hubungan antara ketumpatan dan pencerobohan limfovaskular dengan data klinikopatologi pesakit. Peranan TAM dan ICAM-1 yang mempengaruhi pencerobohan limfovaskular juga dikaji. Pewarnaan hematoksilin dan eosin (H&E) dan imunohistokimia (IHC) pada hirisan berterusan 37 sampel awetan formalin dan benaman parafin (FFPE) karsinoma invasif payudara telah dijalankan. Antibodi D2-40, CD34, CD163, dan ICAM-1 masing-masing digunakan untuk mewarna saluran limfa, saluran darah, TAM, dan reseptor ICAM-1. Ketumpatan saluran limfatik (LVD) berkurangan dengan ketara pada saiz tumor yang meningkat (p=0.045). Peningkatan LVD dan pencerobohan saluran limfatik (LVI) intra-tumoral berkait dengan reseptor faktor pertumbuhan epidermis manusia 2 (HER2) negatif (p=0.022 dan p=0.05). Peratusan LVI adalah lebih tinggi daripada pencerobohan saluran darah (BVI) pada 18.5%. Pencerobohan limfovaskular yang dikesan dalam H&E adalah 49.76% berbanding yang dikesan dalam tisu yang diwarnakan dengan IHC (206/410). Skor ICAM-1 adalah berkaitan secara signifikan dengan kanser payudara bukan tiga negatif (bukan-TNBC) (p=0.008). ICAM-1 secara signifikan meningkat pada sampel bukan-TNBC. Oleh itu, ICAM-1 mungkin berguna secara klinikal sebagai molekul sasaran untuk merawat pesakit bukan-TNBC. Dalam laporan histologi, sebagai tambahan kepada pewarnaan H&E, pewarnaan IHC menggunakan D2-40 dan CD34 perlu dipertimbangkan untuk meningkatkan ketepatan diagnosis.

 

Kata kunci: CD34; D2-40; ICAM-1; karsinoma payudara; pencerobohan limfovaskular

REFERENCES

Abduelkarem, A.R., Saif, F.K., Saif, S. & Alshoaiby, T.A. 2015. Evaluation of breast cancer awareness among female university students in university of Sharjah, UAE. Advances in Breast Cancer Research 04(01): 9-21.

Addis, M.F., Tanca, A., Pagnozzi, D., Crobu, S., Fanciulli, G., Cossu‐Rocca, P. & Uzzau, S. 2009. Generation of high‐quality protein extracts from formalin‐fixed, paraffin‐embedded tissues. Proteomics 9(15): 3815-3823.

Bono, P., Wasenius, V.M., Heikkilä, P., Lundin, J., Jackson, D.G. & Joensuu, H. 2004. High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clinical Cancer Research 10(21): 7144-7149.

Braun, M., Flucke, U., Debald, M., Walgenbach-Bruenagel, G., Walgenbach, K.J., Höller, T., Pölcher, M., Wolfgarten, M., Sauerwald, A. & Keyver-Paik, M. 2008. Detection of lymphovascular invasion in early breast cancer by D2-40 (podoplanin): A clinically useful predictor for axillary lymph node metastases. Breast Cancer Research and Treatment 112(3): 503-511.

Drivalos, A., Papatsoris, A.G., Chrisofos, M., Efstathiou, E. & Dimopoulos, M.A. 2011. The role of the cell adhesion molecules (integrins/cadherins) in prostate cancer. International Braz. J. Urol. 37(3): 302-306.

Espina, V., Mehta, A.I., Winters, M.E., Calvert, V., Wulfkuhle, J., Petricoin, E.F. & Liotta, L. A. 2003. Protein microarrays: Molecular profiling technologies for clinical specimens. Proteomics 3(11): 2091-2100.

Farahani, E., Patra, H.K., Jangamreddy, J.R., Rashedi, I., Kawalec, M., Rao Pariti, R.K., Batakis, P. & Wiechec, E. 2014. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis 35(4): 747-759.

Goddard, J., Sutton, C., Berry, D., O’Byrne, K.J. & Kockelbergh, R. 2001. The use of microvessel density in assessing human urological tumours. BJU International 87(9): 866-875.

Guo, P., Huang, J., Wang, L., Jia, D., Yang, J., Dillon, D.A., Zurakowski, D., Mao, H., Moses, M.A. & Auguste, D.T. 2014. ICAM-1 as a molecular target for triple negative breast cancer. Proceedings of the National Academy of Sciences 111(41): 14710-14715.

Hein, S., Müller, V., Köhler, N., Wikman, H., Krenkel, S., Streichert, T., Schweizer, M., Riethdorf, S., Assmann, V. & Ihnen, M. 2011. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue. Breast Cancer Research and Treatment 129(2): 347-360.

Hua, S. 2013. Targeting sites of inflammation: Intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Frontiers in Pharmacology 4: 127.

Hudis, C.A. 2007. Trastuzumab-mechanism of action and use in clinical practice. New England Journal of Medicine 357(1): 39-51.

Kammerer, S., Roth, R.B., Reneland, R., Marnellos, G., Hoyal, C.R., Markward, N.J., Ebner, F., Kiechle, M., Schwarz- Boeger, U., Griffiths, L.R., Ulbrich, C., Chrobok, K., Forster, G., Praetorius, G.M., Meyer, P., Rehbock, J., Cantor, C.R., Nelson, M.R. & Braun, A. 2004. Large-scale association study identifies ICAM gene region as breast and prostate cancer susceptibility locus. Cancer Res. 64(24): 8906-8910.

Kozłowski, L., Zakrzewska, I., Tokajuk, P. & Wojtukiewicz, M. 2002. Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Roczniki Akademii Medycznej w Bialymstoku 48: 82-84.

Lachapelle, J. & Foulkes, W. 2011. Triple-negative and basal-like breast cancer: Implications for oncologists. Current Oncology 18(4): 161-164.

Ley, K., Miller, Y.I. & Hedrick, C.C. 2011. Monocyte and macrophage dynamics during atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 31(7): 1506-1516.

Maksoud, N.A.E., Ragab, H.M., Shaaban, H.M., Radwan, S.M., Elaziz, W.A. & Hafez, N.H. 2017. Potential value of ICAM- 1 as a biomarker for detection of progression and prognosis in breast carcinoma. American Journal of Biochemistry and Molecular Biology 7(2): 91-95.

Martinez, F.O., Sica, A., Mantovani, A. & Locati, M. 2008. Macrophage activation and polarization. Frontiers in Bioscience: A Journal and Virtual Library 13: 453-461.

Meric-Bernstam, F. & Hung, M.C. 2006. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clinical Cancer Research 12(21): 6326-6330.

Minn, A.J., Gupta, G.P., Siegel, P.M., Bos, P.D., Shu, W., Giri, D.D., Viale, A., Olshen, A.B., Gerald, W.L. & Massagué, J. 2005. Genes that mediate breast cancer metastasis to lung. Nature 436(7050): 518-524.

Mitri, Z., Constantine, T. & O’Regan, R. 2012. The HER2 receptor in breast cancer: Pathophysiology, clinical use, and new advances in therapy. Chemother. Res. Pract. 2012: 743193.

Mohammed, R.A., Ellis, I.O., Mahmmod, A.M., Hawkes, E.C., Green, A.R., Rakha, E.A. & Martin, S.G. 2011. Lymphatic and blood vessels in basal and triple-negative breast cancers: Characteristics and prognostic significance. Modern Pathology 24(6): 774-785.

Mohammed, R.A., Martin, S.G., Gill, M.S., Green, A.R., Paish, E.C. & Ellis, I.O. 2007. Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. The American Journal of Surgical Pathology 31(12): 1825-1833.

Muro, S. & Muzykantov, V. 2005. Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules. Current Pharmaceutical Design 11(18): 2383-2401.

Nishida, N., Yano, H., Nishida, T., Kamura, T. & Kojiro, M. 2006. Angiogenesis in cancer. Vascular Health And Risk Management 2(3): 213-219.

Obeid, E., Nanda, R., Fu, Y.X. & Olopade, O.I. 2013. The role of tumor-associated macrophages in breast cancer progression (review). International Journal of Oncology 43(1): 5-12.

Okegawa, T., Pong, R.C., Li, Y. & Hsieh, J.T. 2004. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochimica Polonica- English Edition 51: 445-458.

Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H. & Akslen, L.A. 2000. Molecular portraits of human breast tumours. Nature 406(6797): 747-752.

Ran, S., Volk, L., Hall, K. & Flister, M.J. 2010. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology 17(4): 229-251.

Rodríguez-Pinilla, S.M., Sarrió, D., Honrado, E., Hardisson, D., Calero, F., Benitez, J. & Palacios, J. 2006. Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clinical Cancer Research 12(5): 1533-1539.

Rosette, C., Roth, R.B., Oeth, P., Braun, A., Kammerer, S., Ekblom, J. & Denissenko, M.F. 2005. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis 26(5): 943-950.

Safuan, S., Storr, S.J., Patel, P.M. & Martin, S.G. 2012. A comparative study of adhesion of melanoma and breast cancer cells to blood and lymphatic endothelium. Lymphat. Res. Biol. 10(4): 173-181.

Schoppmann, S.F., Bayer, G., Aumayr, K., Taucher, S., Geleff, S., Rudas, M., Kubista, E., Hausmaninger, H., Samonigg, H., Gnant, M., Jakesz, R. & Horvat, R. 2004. Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Annals of Surgery 240(2): 306-312.

Schroder, C., Witzel, I., Muller, V., Krenkel, S., Wirtz, R.M., Janicke, F., Schumacher, U. & Milde-Langosch, K. 2011. Prognostic value of intercellular adhesion molecule (ICAM)- 1 expression in breast cancer. J. Cancer Res. Clin. Oncol. 137(8): 1193-1201.

Storr, S.J., Safuan, S., Mitra, A., Elliott, F., Walker, C., Vasko, M.J., Ho, B., Cook, M., Mohammed, R.A. & Patel, P.M. 2012. Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma. Modern Pathology 25(4): 493-504.

Viale, G., Zurrida, S., Maiorano, E., Mazzarol, G., Pruneri, G., Paganelli, G., Maisonneuve, P. & Veronesi, U. 2005. Predicting the status of axillary sentinel lymph nodes in 4351 patients with invasive breast carcinoma treated in a single institution. Cancer 103(3): 492-500.

Vleugel, M., Bos, R., Van der Groep, P., Greijer, A., Shvarts, A., Stel, H., Van der Wall, E. & Van Diest, P. 2004. Lack of lymphangiogenesis during breast carcinogenesis. Journal of Clinical Pathology 57(7): 746-751.

Volodko, N., Reiner, A., Rudas, M. & Jakesz, R. 1998. Tumour-associated macrophages in breast cancer and their prognostic correlations. The Breast 7: 99-91-95.

Wolff, C., Schott, C., Porschewski, P., Reischauer, B. & Becker, K.F. 2011. Successful protein extraction from over-fixed and long-term stored formalin-fixed tissues. PLoS ONE 6(1): e16353.

 

*Corresponding author; email: sabreena@usm.my

 

 

 

previous