Sains Malaysiana 48(7)(2019): 1519–1527

http://dx.doi.org/10.17576/jsm-2019-4807-21

 

Kesan Penambahan Magnesia dan Zirkonia terhadap Sifat Kebioaktifan dan Kekuatan Mampatan β-Wolastonit yang Disintesis daripada Kulit Telur

(The Effects of Magnesia and Zirconia Addition on Bioactivity and Compressive Strength Properties of β-Wollastonite Synthesized from Eggshells)

 

HAMISAH ISMAIL*, NURUL FITRAH MOHD FADZIL, ROSLINDA SHAMSUDIN & MUHAMMAD AZMI ABDUL HAMID

 

Pusat Sains Terkehadapan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 21 September 2018/Accepted: 11 April 2019

 

ABSTRAK

Penyelidikan ini mengkaji kesan penambahan magnesia (MgO) dan zirkonia (ZrO2) terhadap sifat kebioaktifan dan kekuatan mampatan β-wolastonit. Kalsium oksida (CaO) yang diperoleh daripada kulit telur dan silika (SiO2) yang diperoleh daripada abu sekam padi dicampur menggunakan nisbah CaO:SiO2 sebanyak 45:55 dengan air ternyah ion dan dimasukkan ke dalam autoklaf pada suhu 135°C selama 8 jam untuk menghasilkan β-wolastonit. Komposisi yang digunakan di dalam kajian ini adalah 90 hingga 95 % bt. β-wolastonit, dengan 5 hingga 10 % bt. MgO dan 5 hingga 10 % bt. ZrO2. Perubahan fasa, morfologi, unsur dan pH bagi setiap komposisi sampel sepanjang ujian kebioaktifan selama 7 hari dikaji dan dijelaskan menggunakan XRD, SEM/EDX dan pH. Selepas 7 hari rendaman, kesemua sampel, iaitu 100 % bt. β-wolastonit, 90 % bt. β-wolastonit-10 % bt. MgO, 90 % bt. β-wolastonit-10 % bt. ZrO2, dan 90 % bt. β-wolastonit-5 % bt. MgO-5 % bt. ZrO2 menunjukkan penurunan puncak fasa β-wolastonit (β-CaSiO3) dan didapati puncak fasa hidroksiapatit (HA) turut dikesan. Morfologi kesemua sampel berubah daripada gugusan berbentuk sfera pada hari pertama rendaman hingga membentuk suatu lapisan nipis kekaca iaitu amorfus kalsium fosfat (ACP) pada hari ke-7 rendaman. Sampel β-wolastonit dengan 5 % bt. MgO - 5 % bt. ZrO2 menunjukkan kekuatan mampatan terbaik berbanding komposisi lain. Sampel β-wolastonit dengan 5 % bt. MgO - 5 % bt. ZrO2 didapati sesuai untuk dijadikan bahan alternatif pengganti tulang kerana bersifat bioaktif dan memiliki kekuatan mampatan yang baik.

 

Kata kunci: β-wolastonit; kebioaktifan; kulit telur; magnesia; zirconia

 

ABSTRACT

This study examines the effects of magnesia (MgO) and zirconia (ZrO2) addition on the bioactivity and compressive strength properties of β-wollastonite. Calcium oxide (CaO) that was obtained from egg shells and silica (SiO2) that was obtained from rice husk ash were mixed using a CaO:SiO2 ratio of 45:55 with deionized water and put into an autoclave at 135°C for 8 h to produce β-wollastonite. The compositions used in this study were 90 to 95 wt. % of β-wollastonite, with 5 to 10 wt. % of MgO and ZrO2. Phase, morphological, elemental, and pH changes for each composition during the 7 day bioactivity test were reviewed and explained using XRD, SEM/EDX, and pH. After 7 days of immersion, all samples, namely, 100 wt. % β-wollastonite, 90 wt. % β-wollastonite-10 wt. % MgO, 90 wt. % β-wollastonite-10 wt. % ZrO2, and 90 wt. % β-wollastonite-5 wt. %-MgO-5 wt. % ZrO2 showed decreasing peaks of the β-wollastonite (β-CaSiO3) and found that hydroxyapatite (HA) phase peak was also detected. The morphology of all the samples had evolved from a spherical form on the first day of the immersion to a glassy thin layer of amorphous calcium phosphate (ACP) on the seventh day of soaking. β-wollastonite samples with 5 wt. % MgO-5 wt. % ZrO2 showed the best compression strength compared to other composites. β-wollastonite samples with 5 wt. % MgO - 5 wt. % ZrO2 were found to be suitable as alternative substances for bone replacement because they are bioactive and have good compression strength.

 

Keywords: β-wollastonite; bioactivity; egg shell; magnesia; zirconia

REFERENCES

Abbona, F. & Baronnet, A. 1996. A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. Journal of Crystal Growth 165: 98-105.

Abdel-Hameed, S.A.M. & El-kheshen, A.A. 2003. Thermal and chemical properties of diopside-wollastonite glass- ceramics in the SiO2–CaO–MgO system from raw materials. Ceramics International 29: 265-269.

Brook, I., Freeman, C., Grubb, S., Cummins, N., Curran, D., Reidy, C., Hampshire, S. & Towler, M. 2012. Biological evaluation of nano-hydroxyapatite-zirconia (HA-Zro2) composites and strontium-hydroxyapatite (Sr-HA) for load-bearing applications. Journal of Biomaterials Applications 27(3): 291-298.

Cölfen, H. 2010. Biomineralization: A crystal-clear view. Nature Materials 9: 960-961. Dorozhkin, S.V. 2010a. Calcium orthophosphates as bioceramics: State of the art. Journal of Functional Biomaterials 1(1): 22-107.

Dorozhkin, S.V. 2010a. Calcium orthophosphates as bioceramics: State of the art. Journal of Functional Biomaterials 1(1): 22-107.

Dorozhkin, S.V. 2010b. Bioceramics of calcium orthophosphates. Biomaterials 31(7): 1465-1485.

Ewais, E.M.M., Amira, M.M.A., Yasser, M.Z.A., Eman, A.A., Ulrike, H. & Kurosch, R. 2017. Combined effect of magnesia and zirconia on the bioactivity of calcium silicate ceramics at C\S ratio less than unity. Materials Science and Engineering C 70: 155-160.

Hamisah Ismail, Roslinda Shamsudin & Muhammad Azmi Abdul Hamid. 2016a. Effect of autoclaving and sintering on the formation of β-wollastonite. Materials Science and Engineering: C 58: 1077-1081.

Hamisah Ismail, Roslinda Shamsudin, Muhammad Azmi Abdul Hamid & Rozidawati Awang. 2016b. Mekanisme pembentukan apatit pada permukaan sampel β-wolastonit yang dihasilkan daripada abu sekam padi. Sains Malaysiana 45(12): 1779-1785.

Hench, L.L. 2006. The story of bioglass. Journal of Materials Science: Materials in Medicine 17(11): 967-978.

Ho, Y.C., Huang, F.M. & Chang, Y.C. 2007. Cytotoxicity of formaldehyde on human osteoblastic cells is related to intracellular glutathione levels. Journal of Biomedical Materials Research: Part B, Applied Biomaterials 83(2): 340-344.

Kansal, I., Dilshat, U.T., Ashutosh, G., Maria, J.P. & José, M.F.F. 2010. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics. Acta Biomaterialia 6(11): 4380-4388.

Kokubo, T. & Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15): 2907-2915.

Kunjalukkal, P.S., Gervaso, F., Carrozzo, M., Scalera, F., Sannino, A. & Licciulli, A. 2013. Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceramics International 39(1): 619-627.

Magallanes, P.M., Luklinska, Z.B., De Aza, A.H., Carrodeguas, R.G., De Aza, S. & Pena, P. 2011. Bone-like forming ability of apatite-wollastonite glass ceramic. Journal of the European Ceramic Society 31(9): 1549-1561.

Muccillo, E.N.S., Tadokoro, S.K. & Muccillo, R. 2004. Physical characteristics and sintering behavior of MgO-doped ZrO2 nanoparticles. Journal of Nanoparticle Research 6: 301-305.

Palakurthy, S., Venu, G.R.K., Samudrala, R.K. & Abdul, A.P. 2019. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science and Engineering C 98: 109-117.

Roslinda Shamsudin, Farah 'Atiqah Abdul Azam, Muhammad Azmi Abdul Hamid & Hamisah Ismail. 2017. Bioactivity and cell compatibility of β-wollastonite derived from rice husk ash and limestone. Materials 10: 1188.

Shuai, C.J., Zhong, Z.M., Zi, K.H. & Shu, P.P. 2014. Preparation of complex porous scaffolds via selective laser sintering of poly(vinyl alcohol)/calcium silicate. Journal of Bioactive and Compatible Polymers 29(2): 110-120.

Uchida, M., Kim, H.M., Kokubo, T., Miyaji, F. & Nakamura, T. 2001. Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. Journal of the American Ceramic Society 84(9): 2041-2044.

Wei, J., Chen, F., Shin, J.W., Hong, H., Dai, C., Su, J. & Liu, C. 2009. Preparation and characterization of bioactive mesoporous wollastonite-polycaprolactone composite scaffold. Biomaterials 30(6): 1080-1088.

Zhang, F., Chang, J., Lin, K. & Lu, J. 2008. Preparation, mechanical properties and in vitro degradability of wollastonite/tricalcium phosphate macroporous scaffolds from nanocomposite powders. Journal of Materials Science: Materials in Medicine 19(1): 167-173.

 

*Corresponding author; email: hamisahismail@ yahoo.com

 

 

 

previous