Sains Malaysiana 48(7)(2019):
1519–1527
http://dx.doi.org/10.17576/jsm-2019-4807-21
Kesan Penambahan
Magnesia dan Zirkonia terhadap Sifat Kebioaktifan dan Kekuatan Mampatan
β-Wolastonit yang Disintesis daripada Kulit Telur
(The Effects of
Magnesia and Zirconia Addition on Bioactivity and Compressive Strength
Properties of β-Wollastonite Synthesized from Eggshells)
HAMISAH ISMAIL*, NURUL FITRAH MOHD
FADZIL, ROSLINDA SHAMSUDIN & MUHAMMAD AZMI ABDUL HAMID
Pusat
Sains Terkehadapan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
21 September 2018/Accepted: 11 April 2019
ABSTRAK
Penyelidikan ini
mengkaji kesan penambahan magnesia (MgO) dan zirkonia (ZrO2)
terhadap sifat kebioaktifan dan kekuatan mampatan β-wolastonit. Kalsium
oksida (CaO) yang diperoleh daripada kulit telur dan silika (SiO2)
yang diperoleh daripada abu sekam padi dicampur menggunakan nisbah CaO:SiO2 sebanyak
45:55 dengan air ternyah ion dan dimasukkan ke dalam autoklaf pada suhu 135°C
selama 8 jam untuk menghasilkan β-wolastonit. Komposisi yang digunakan di
dalam kajian ini adalah 90 hingga 95 % bt. β-wolastonit, dengan 5 hingga
10 % bt. MgO dan 5 hingga 10 % bt. ZrO2. Perubahan fasa, morfologi,
unsur dan pH bagi setiap komposisi sampel sepanjang ujian kebioaktifan selama 7
hari dikaji dan dijelaskan menggunakan XRD, SEM/EDX dan
pH. Selepas 7 hari rendaman, kesemua sampel, iaitu 100 % bt. β-wolastonit,
90 % bt. β-wolastonit-10 % bt. MgO, 90 % bt. β-wolastonit-10 % bt.
ZrO2, dan 90 % bt. β-wolastonit-5 % bt. MgO-5 % bt. ZrO2 menunjukkan
penurunan puncak fasa β-wolastonit (β-CaSiO3)
dan didapati puncak fasa hidroksiapatit (HA) turut dikesan. Morfologi
kesemua sampel berubah daripada gugusan berbentuk sfera pada hari pertama
rendaman hingga membentuk suatu lapisan nipis kekaca iaitu amorfus kalsium
fosfat (ACP) pada hari ke-7 rendaman. Sampel β-wolastonit
dengan 5 % bt. MgO - 5 % bt. ZrO2 menunjukkan kekuatan mampatan
terbaik berbanding komposisi lain. Sampel β-wolastonit dengan 5 % bt. MgO
- 5 % bt. ZrO2 didapati sesuai untuk dijadikan bahan alternatif
pengganti tulang kerana bersifat bioaktif dan memiliki kekuatan mampatan yang
baik.
Kata kunci:
β-wolastonit; kebioaktifan; kulit telur; magnesia; zirconia
ABSTRACT
This study examines the
effects of magnesia (MgO) and zirconia (ZrO2)
addition on the bioactivity and compressive strength properties of
β-wollastonite. Calcium oxide (CaO) that was obtained from egg shells and
silica (SiO2) that was obtained from rice husk ash were mixed using
a CaO:SiO2 ratio of 45:55 with deionized water and put into an
autoclave at 135°C for 8 h to produce β-wollastonite. The compositions
used in this study were 90 to 95 wt. % of β-wollastonite, with 5 to 10 wt.
% of MgO and ZrO2. Phase, morphological, elemental,
and pH changes for each composition during the 7 day bioactivity test were
reviewed and explained using XRD, SEM/EDX,
and pH. After 7 days of immersion, all samples, namely, 100 wt. %
β-wollastonite, 90 wt. % β-wollastonite-10 wt. % MgO, 90 wt. %
β-wollastonite-10 wt. % ZrO2, and 90 wt. %
β-wollastonite-5 wt. %-MgO-5 wt. % ZrO2 showed
decreasing peaks of the β-wollastonite (β-CaSiO3)
and found that hydroxyapatite (HA) phase peak was also
detected. The morphology of all the samples had evolved from a spherical form
on the first day of the immersion to a glassy thin layer of amorphous calcium
phosphate (ACP) on the seventh day of soaking. β-wollastonite
samples with 5 wt. % MgO-5 wt. % ZrO2 showed the best compression
strength compared to other composites. β-wollastonite samples with 5 wt. %
MgO - 5 wt. % ZrO2 were found to be suitable as
alternative substances for bone replacement because they are bioactive and have
good compression strength.
Keywords: β-wollastonite; bioactivity; egg shell; magnesia;
zirconia
REFERENCES
Abbona, F. &
Baronnet, A. 1996. A XRD and TEM study on the transformation of amorphous
calcium phosphate in the presence of magnesium. Journal of Crystal Growth 165:
98-105.
Abdel-Hameed, S.A.M.
& El-kheshen, A.A. 2003. Thermal and chemical properties of
diopside-wollastonite glass- ceramics in the SiO2–CaO–MgO system from raw
materials. Ceramics International 29: 265-269.
Brook, I., Freeman, C.,
Grubb, S., Cummins, N., Curran, D., Reidy, C., Hampshire, S. & Towler, M.
2012. Biological evaluation of nano-hydroxyapatite-zirconia (HA-Zro2)
composites and strontium-hydroxyapatite (Sr-HA) for load-bearing applications. Journal
of Biomaterials Applications 27(3): 291-298.
Cölfen, H. 2010.
Biomineralization: A crystal-clear view. Nature Materials 9: 960-961.
Dorozhkin, S.V. 2010a. Calcium orthophosphates as bioceramics: State
of the art. Journal of Functional Biomaterials 1(1): 22-107.
Dorozhkin, S.V. 2010a.
Calcium orthophosphates as bioceramics: State of the art. Journal
of Functional Biomaterials 1(1): 22-107.
Dorozhkin, S.V. 2010b.
Bioceramics of calcium orthophosphates. Biomaterials 31(7): 1465-1485.
Ewais, E.M.M., Amira,
M.M.A., Yasser, M.Z.A., Eman, A.A., Ulrike, H. & Kurosch, R. 2017. Combined
effect of magnesia and zirconia on the bioactivity of calcium silicate ceramics
at C\S ratio less than unity. Materials Science and Engineering C 70:
155-160.
Hamisah Ismail, Roslinda
Shamsudin & Muhammad Azmi Abdul Hamid. 2016a. Effect of autoclaving and
sintering on the formation of β-wollastonite. Materials Science and
Engineering: C 58: 1077-1081.
Hamisah Ismail, Roslinda
Shamsudin, Muhammad Azmi Abdul Hamid & Rozidawati Awang. 2016b. Mekanisme
pembentukan apatit pada permukaan sampel β-wolastonit yang dihasilkan
daripada abu sekam padi. Sains Malaysiana 45(12): 1779-1785.
Hench, L.L. 2006. The
story of bioglass. Journal of Materials Science: Materials in Medicine 17(11):
967-978.
Ho, Y.C., Huang, F.M.
& Chang, Y.C. 2007. Cytotoxicity of formaldehyde on human osteoblastic
cells is related to intracellular glutathione levels. Journal of Biomedical
Materials Research: Part B, Applied Biomaterials 83(2): 340-344.
Kansal, I., Dilshat,
U.T., Ashutosh, G., Maria, J.P. & José, M.F.F. 2010. Structural analysis
and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and
glass-ceramics. Acta Biomaterialia 6(11): 4380-4388.
Kokubo, T. &
Takadama, H. 2006. How useful is SBF in predicting in vivo bone
bioactivity? Biomaterials 27(15): 2907-2915.
Kunjalukkal, P.S.,
Gervaso, F., Carrozzo, M., Scalera, F., Sannino, A. & Licciulli, A. 2013.
Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and
biodegradable properties for bone tissue engineering. Ceramics International 39(1): 619-627.
Magallanes, P.M.,
Luklinska, Z.B., De Aza, A.H., Carrodeguas, R.G., De Aza, S. & Pena, P.
2011. Bone-like forming ability of apatite-wollastonite glass ceramic. Journal
of the European Ceramic Society 31(9): 1549-1561.
Muccillo, E.N.S.,
Tadokoro, S.K. & Muccillo, R. 2004. Physical characteristics and sintering
behavior of MgO-doped ZrO2 nanoparticles. Journal of Nanoparticle Research 6:
301-305.
Palakurthy, S., Venu,
G.R.K., Samudrala, R.K. & Abdul, A.P. 2019. In vitro bioactivity and
degradation behaviour of β-wollastonite derived from natural waste. Materials
Science and Engineering C 98: 109-117.
Roslinda Shamsudin, Farah
'Atiqah Abdul Azam, Muhammad Azmi Abdul Hamid & Hamisah Ismail.
2017. Bioactivity and cell compatibility of β-wollastonite
derived from rice husk ash and limestone. Materials 10: 1188.
Shuai, C.J., Zhong,
Z.M., Zi, K.H. & Shu, P.P. 2014. Preparation of complex porous scaffolds via selective laser sintering of poly(vinyl alcohol)/calcium silicate. Journal
of Bioactive and Compatible Polymers 29(2): 110-120.
Uchida, M., Kim, H.M.,
Kokubo, T., Miyaji, F. & Nakamura, T. 2001. Bonelike apatite formation
induced on zirconia gel in a simulated body fluid and its modified solutions. Journal
of the American Ceramic Society 84(9): 2041-2044.
Wei, J., Chen, F., Shin,
J.W., Hong, H., Dai, C., Su, J. & Liu, C. 2009. Preparation and
characterization of bioactive mesoporous wollastonite-polycaprolactone composite
scaffold. Biomaterials 30(6): 1080-1088.
Zhang, F., Chang, J.,
Lin, K. & Lu, J. 2008. Preparation, mechanical properties and in vitro degradability
of wollastonite/tricalcium phosphate macroporous scaffolds from nanocomposite
powders. Journal of Materials Science: Materials in Medicine 19(1):
167-173.
*Corresponding
author; email: hamisahismail@ yahoo.com
|