Sains Malaysiana 48(7)(2019):
1547–1555
http://dx.doi.org/10.17576/jsm-2019-4807-24
Dependence Modeling and
Portfolio Risk Estimation using GARCH-Copula Approach
(Pemodelan Kebersandaran
dan Penganggaran Risiko Portfolio menggunakan Pendekatan GARCH-Copula)
RUZANNA
AB
RAZAK1* &
NORISZURA ISMAIL2
1Faculty
of Management, Multimedia University, 63100 Cyberjaya, Selangor
Darul Ehsan, Malaysia
2Pusat
Pemodelan dan Sains Data, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 21 July 2017/Accepted: 3 May 2019
ABSTRACT
Past studies have shown
that linear correlation measure may result in misleading interpretations and
implications of dependency when financial variables are involved. The copula
approach can be adopted as an alternative for measuring dependence as it
provides the solution to fat tail problems in multivariate cases which arises
from the probability of large or extreme co-movements. Due to limited studies
on copulas using Islamic financial data, this study set outs to obtain a clear
picture on the dependence between Islamic and conventional stock markets in
Malaysia. Firstly, we model the dependence between Islamic and conventional
returns data using the copula-ARMA-GARCH models with normal
and non-normal error distributions, and secondly, we evaluate the portfolios of
Islamic and conventional indices using recent risk measures. This paper shows
that, by using the copula approach for measuring the dependency between two
financial variables while maintaining their true nature as described by the ARMA-GARCH models, meaningful interpretation can be made about the
association of the financial variables which reflects the real association
between markets. Furthermore, this study proposes a set of procedures on how
portfolio risks can be estimated using VaR based on the ARMA(p,q)-GARCH(1,1)-t-copula
models including backtesting via simulation.
Keywords: Copula; GARCH;
risk; stock returns
ABSTRAK
Kajian lepas telah
menunjukkan ukuran korelasi linear mungkin boleh menghasilkan interpretasi dan
implikasi yang mengelirukan tentang kebersandaran yang melibatkan pemboleh ubah
kewangan. Kaedah copula boleh diguna sebagai alternatif untuk mengukur
kebersandaran. Kaedah ini memberikan penyelesaian kepada masalah ekor tebal
dalam kes multivariat yang muncul daripada pergerakan bersama yang ekstrim.
Kajian ini dijalankan untuk mendapatkan gambaran yang jelas berkenaan
kebersandaran antara pasaran saham islam dengan konvensional di Malaysia kerana
kajian berkenaan kaedah copula ke atas data kewangan islam adalah terhad.
Pertama, pemodelan kebersandaran dilakukan menggunakan kaedah copula-ARMA-GARCH dengan taburan ralat normal dan tidak normal. Kedua, portfolio
risiko dianggar melalui ukuran risiko yang terkini. Kajian ini menunjukkan
kaedah copula boleh mengukur kebersandaran dan mengekalkan ciri sebenar
pulangan saham yang diwakili oleh model ARMA-GARCH, di samping
memberikan interpretasi bermakna yang mencerminkan hubungan sebenar antara
pasaran saham. Selain itu, kajian ini mencadangkan prosedur penganggaran risiko
menggunakan kaedah VaR yang berdasarkan model ARMA(p,q)-GARCH(1,1)-t-copula,
termasuklah pengujian belakang melalui pendekatan simulasi.
Kata kunci: Copula; GARCH;
pulangan saham; risiko
REFERENCES
Ab Razak, R.
& Ismail, N. 2016. Portfolio risks of bivariate financial returns using copula-VaR
approach: A case study on Malaysia and U.S. stock markets. Global Journal of
Pure and Applied Mathematics 12(3): 1947-1964.
Ab Razak, R.
& Ismail, N. 2015. The dependence of Islamic and conventional stocks: A
copula approach. AIP Conference Proceeding 1678 060012: 1-5.
Albaity, M.
& Ahmad, R. 2008. Performance of Syariah and composite indices: Evidence
from Bursa Malaysia. Asian Academic of Management Journal of Accounting and
Finance 4(1): 23-43.
Aloui, R.,
Ben Aïssa, M.S., Hammoudeh, S. & Nguyen, D.K. 2014. Dependence and extreme
dependence of crude oil and natural gas prices with applications to risk
management. Energy Economics 42: 332-342.
Genest, C.,
Rémillard, B. & Beaudoin, D. 2009. Goodness-of-fit tests for copulas: A
review and a power study. Insurance: Mathematics and Economics 44(2):
199-213.
Ghalanos, A.
2015. Introduction to the rugarch package (Version 1.3-1).
https://cran.r-project.org/web/packages/rugarch/
vignettes/Introduction_to_the_rugarch_package.pdf. Accessed on 27 January 2016.
Hammoudeh,
S., Mensi, W., Reboredo, J.C. & Nguyen, D.K. 2014. Dynamic dependence of
the global Islamic equity index with global conventional equity market indices
and risk factors. Pasific-Basin Finance Journal 30: 189-206.
Heinen, A.
& Valdesogo, A. 2012. Copula-based volatility models. In. Handbook of
Volatility Models and Their Applications, edited by Bauwens, L., Hafner, C.
& Laurent, S. New Jersey: John Wiley & Sons. pp. 293-316.
Jäschke, S.
2014. Estimation of risk measures in energy portfolios using modern copula
techniques. Computational Statistics and Data Analysis 76: 359-376.
Melo Mendes,
B.V.D. & Aíube, C. 2011. Copula based models for serial dependence. International
Journal of Managerial Finance 7(1): 68-82.
Nelson, R.B.
2006. An Introduction to Copulas. New York: Springer.
Ning, C.
2010. Dependence structure between the equity market and the foreign exchange
market - A copula approach. Journal of International Money and Finance 29:
743-759.
Posedel, P.
2005. Properties and estimation of GARCH (1,1) model. Metodološki Zvezki 2(2):
243-257.
Riddles, N.
2001. A portfolio manager’s view of downside risk. In. Managing Downside
Risk in Financial Markets, edited by Sortino, F. & Satchell, S. Oxford:
Butterworth-Heinemann Finance. pp. 74-92.
Righi, M.B.
& Ceretta, P.S. 2013. Estimating non-linear serial and
cross-interdependence between financial assets. Journal of Banking and
Finance 37: 837-846.
Righi, M.B.
& Ceretta, P.S. 2011. Modeling risk dependence with copulas in financial
market: A Latin case. European Journal of Scientific Research 59(3):
295-306.
Ruppert, D.
2011. Statistics and Data Analysis for Financial Engineering. New York:
Springer.
Shamiri, A.,
Hamzah, N.A. & Pirmoradian, A. 2011. Tail dependence estimate in financial
market risk management: Clayton-Gumbel copula approach. Sains Malaysiana 40(8):
927-935.
Stoyanov,
S.V., Rachev, S.T., Racheva-Yotova, B. & Fabozzi, F.J. 2011. Fat-tailed
model for risk estimation. The Journal of Portfolio Management 37(2):
107-117.
*Corresponding
author; email: ruzanna415@gmail.com
|