Sains Malaysiana 48(9)(2019): 1887–1897
http://dx.doi.org/10.17576/jsm-2019-4809-09
Polymers
Encapsulated Aspirin Loaded Silver Oxide Nanoparticles: Synthesis,
Characterization and its Bio-Applications
(Aspirin Terkurung Polimer
Dimuatkan Nanozarah
Perak Oksida: Sintesis, Pencirian dan Bio-Penggunaan)
SHABIR
AHMAD1,
HIRA
RASHID1,
QUDISA
JALIL1,
SIDRA
MUNIR1,
BARKATULLAH2,
SULAIMAN
KHAN1,
RIAZ
ULLAH3*,
ABDELAATY
A.
SHAHAT3,4,
HAFIZ
M.
MAHMOOD5,
ALMOQBIL
A.
NASER
ABDULLAH A-MISHARI3 & AHMAD BARI6
1Department
of Chemistry, Islamia College University, Peshawar, KPK, Pakistan
2Department
of Botany, Islamia College University, Peshawar, KPK, Pakistan
3Medicinal
Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud
University, Riyadh, Saudi Arabia
4Department
of Phytochemistry, National Research Centre, 33 EI Bohouth St., 12622, Dokki, Giza, Egypt
5Department
of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi
Arabia
6Central
Lab, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Received: 20
January 2019/Accepted: 18 June 2019
ABSTRACT
Simple, facile and cost
effective approach is used for the synthesis of Aspirin based silver oxide nano-particles (SONPs) by chemical wet method.
The synthesized SONPs were loaded with Aspirin to form
Asp-SONPs, which was confirmed with the help of UV spectroscopy.
Characterization was done using spectroscopy techniques FTIR, SEM, TEM and XRD. Antimicrobial assay of Asp-SONPs
were carried out against six bacterial strains (E.
coli, Protues, Vibrio, Citrobacter, Enterobacter, S. aureus) and fungal strains (Curvularia, Alternaria, Rhizopus, Aspergillus, Helmithosporium, Paecilomyces) by well diffusion method which
confirmed its potential application as an antimicrobial agent. Asp-SONPs-PVA also
displayed highest insecticidal activity against both tested insects (Tribolium casterium and Callosobruchus chinensis) having
LC50 value of 15.917, and 37.6365 and highest percent
mortality at 1000 ppm was 67%, and 73%, respectively. PVA coated SONPs
displayed encouraging phytotoxicity when exposed to
allopathic, where Asp-SONPs coated PVA give
excellent anthelmintic activity by killing or paralyzing all the species
(earthworm) at 1000 ppm.
Keywords:
Antimicrobial; antioxidant; aspirin; insecticidal; nanoparticles
ABSTRAK
Pendekatan yang mudah dan berkesan digunakan untuk mensintesis Aspirin berasaskan
nanozarah perak beroksida (SONPs) dengan
menggunakan kaedah
kimia basah. SONPs
tersintesis dengan
Aspirin untuk membentuk Asp-SONPs,
yang dikenal pasti
dengan menggunakan Spektroskopi UV. Pencirian
telah dilakukan
menggunakan teknik spektroskopi iaitu FTIR,
SEM,
TEM
dan XRD.
Cerakinan antimikrob Asp-SONPs
telah dijalankan
terhadap enam strain bakteria(E. coli, Protues,
Vibrio, Citrobacter, Enterobacter,
S. aureus) dan strain kulat
(Curvularia, Alternaria,
Rhizopus, Aspergillus, Helmithosporium,
Paecilomyces) dengan
menggunakan kaedah
resapan yang mengesahkan aplikasinya yang berpotensi
sebagai agen antimikrob.
Asp-SONPs-PVA juga
menunjukkan aktiviti
insektisid yang tertinggi terhadap kedua-dua serangga yang diuji (Tribolium casterium dan Callosobruchus
chinensis) yang mempunyai
nilai LC50 iaitu
15.917 dan 37.6365 dan
peratus kematian tertinggi pada 1000 ppm masing-masing adalah 67% dan 73%. SONPs bersalut
PVA
menunjukkan kefitotoksikan
menggalakkan apabila
terdedah kepada alopati dengan Asp-SONPs
bersalut PVA memberi
aktiviti antelmin
cemerlang dengan membunuh atau melumpuhkan
semua spesies
(cacing tanah) pada
1000 ppm.
Kata kunci: Antimikrob; antioksidan; aspirin; insektisid; nanozarah
REFERENCES
Ahmad,
S., Ullah, R., Naser M. AbdElsalam, Hassan, F., Ahtaram,
B., Muhammad, T.J., Anwar, A.S. & Muhammad, A. 2014. One new royleanumoate from Teucrium royleanumWall. ex Benth. The Scientific World Journal 2014: 581629.
Alaqad, K. & Saleh,
T.A. 2016. Gold and silver nanoparticles: Synthesis methods, characterization
routes and applications towards drugs. J. Environ. Anal. Toxicol. 6: 384.
Ali-Shtayeh, M. & Abu, G.S.I. 1999. Antifungal activity of
plant extracts against dermatophytes. Mycoses 42(11-12): 665-672.
Balouiri, M., Sadiki, M.
& Ibnsouda, S.K. 2016. Methods for in vitro evaluating
antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2):
71-79.
Bindhu, M. & Umadevi, M. 2015. Antibacterial and catalytic activities of
green synthesized silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 135: 373-378.
Chiguvare, H., Opeoluwa, O.O., Reuben, M., Olukayode,
A., Idris, A.O., Adebola, O.O., Benedicta, N.N., Sandile, P.S., Sneha, M. & Oluwatobi, S.O. 2016. Synthesis of silver nanoparticles
using buchu plant extracts and their analgesic
properties. Molecules 21: 774.
Choi,
J.S., Lee, H., Park, Y.K., Kim, S.J., Kim, B.J., An, K.H., Kim, B.H. &
Jung, S.C. 2016. Application of silver and silver oxide nanoparticles
impregnated on activated carbon to the degradation of bromate. Journal of
Nanoscience and Nanotechnology 16(5): 4493-4497.
Dhoondia, Z.H. &
Chakraborty, H. 2012. Lactobacillus mediated synthesis of silver oxide
nanoparticles. Nanomaterials and Nanotechnology https://doi.org/10.5772/55741.
Dinesh,
D., Murugan, K., Madhiyazhagan,
P., Panneerselvam, C., Kumar, P.M., Nicoletti, M., Jiang, W., Benelli,
G., Chandramohan, B. & Suresh, U. 2015. Mosquitocidal and antibacterial activity of
green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitology Research 114(4):
1519-1529.
El Kassas, H.Y. & Attia,
A.A. 2014. Bactericidal application and cytotoxic activity of biosynthesized
silver nanoparticles with an extract of the red seaweed Pterocladiella capillaceaon the HepG2 cell line. Asian Pac. J.
Cancer Prev. 15(3): 1299-1306.
Fang,
J., Zhong, C. & Mu, R. 2005. The study of
deposited silver particulate films by simple method for efficient SERS. Chemical
Physics Letters 401: 271-275.
Galya, T., Vladimir,
S., Ivo, K., Radko, N., Jana, S. & Petr, S. 2008.
Antibacterial poly (vinyl alcohol) film containing silver nanoparticles:
Preparation and characterization. Journal of Applied Polymer Science 110(5):
3178-3185.
Gurunathan, S., Han, J.W., Eppakayala, V., Jeyaraj, M. &
Kim, J.H. 2013. Cytotoxicity of biologically synthesized silver nanoparticles
in MDA-MB-231 human breast cancer cells. BioMed Research International 2013: 535796.
Hosseinpour-Mashkani, S.M.
& Ramezani, M. 2014. Silver and silver oxide
nanoparticles: Synthesis and characterization by thermal decomposition. Materials
Letters 130: 259-262.
Morones, J.R., Jose, L.E., Alejandra, C.,
Katherine, H., Juan, B.K., Jose, T.R.I. & Miguel, J.Y. 2005. The
bactericidal effect of silver nanoparticles. Nanotechnology 16(10):
2346-2353.
Moukrad, N., Fouzia,
R.F., Ikram, D. & Omar, Z. 2014. Phytotoxic
activity of the zinc oxyde nanoparticles
synthesized from different precursors on germination and radicle growth of
seeds Lepidium sativum.
International Journal of Scientific and Research Publications 4(12): 1-6.
Priya, S. & Santhi, S. 2015. Biosynthesis and in vitro anthelmintic
activity of silver nanoparticles using aqueous leaf extracts of Azadirachta indica. World Journal of Pharmacy and Pharmaceutical Sciences 4(10): 2105-2116.
Rafique, M., Sadaf, I., Shahid Rafique, M. & Bilal Tahir, M. 2016. A review on green
synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology 45(7): 1272-1291.
Siddiqui,
M.R.H., Adil, S.F., Assal,
M.E., Roushown, Ali. & Al- Warthan,
A. 2013. Synthesis and characterization of silver oxide and silver chloride
nanoparticles with high thermal stability. Asian J. Chem. 25(6):
3405-3409.
Sondi, I. & Salopek-Sondi, B. 2004. Silver nanoparticles as
antimicrobial agent: A case study on E. coli as a model for
Gram-negative bacteria. Journal of Colloid and Interface Science 275(1):
177-182.
Sudha, A., Jeyakanthan, J. & Srinivasan, P. 2017. Green synthesis
of silver nanoparticles using Lippia nodifloraaerial extract and evaluation of their
antioxidant, antibacterial and cytotoxic effects. Resource-Efficient
Technologies 3(4): 506-515.
Ullah, S., Ibrar, M. & Muhammad, N. 2013. Pharmacognostic, larvicidal and phytotoxic profile of Coleus forskohliiand Rosmarinus officinalis. Journal of Pharmacognosy and Phytotherapy5(4): 59-63.
Velammal, S.P., Devi, T.A.
& Amaladhas, T.P. 2016. Antioxidant,
antimicrobial and cytotoxic activities of silver and gold nanoparticles
synthesized using Plumbago zeylanicabark. Journal of Nanostructure in
Chemistry 6(3): 247-260.
Velayutham, K. & Ramanibai, R. 2016. Larvicidal activity of synthesized silver nanoparticles using isoamyl acetate identified in Annona squamosaleaves
against Aedes aegypti and Culex quinquefasciatus. The Journal of Basic & Applied Zoology 74: 16-22.
Velayutham, K., Rahuman, A.A., Rajakumar, G., Roopan, S.M., Elango, G., Kamaraj, C., Marimuthu, S., Santhoshkumar, T., Iyappan, M.
& Siva, C. 2013. Larvicidal activity of green
synthesized silver nanoparticles using bark aqueous extract of Ficus racemosaagainst Culex quinquefasciatus and Culex gelidus. Asian Pacific Journal of Tropical Medicine 6(2): 95-101.
Yong,
N.L., Ahmad, A. & Mohammad, A.W. 2013. Synthesis and characterization of
silver oxide nanoparticles by a novel method. Int. J. Sci. Eng. Res. 4:
155-158.
*Corresponding author; email:
rullah@ksu.edu.sa
|