Sains Malaysiana 48(9)(2019): 1913–1918
http://dx.doi.org/10.17576/jsm-2019-4809-12
Penghasilan Zarah Nano Ferum Oksida (FeNPs) daripada Garam Ferosenium menggunakan Hidrogel Poli-Akril Amida (P(Am) sebagai Templat
(Preparation
of Ferum Oxide Nanoparticles (FeNPs)
from Ferocenium Salt using Polyacrylamide
(P(Am) as Template)
MELLISSA ANDARINI1, MARYAM MOKHTAROM1, BOHARI M. YAMIN1, M. CAIRUL IQBAL M. AMIN2 & AZWAN MAT LAZIM1*
1Pusat Bahan Termaju & Sumber Keterbaharuan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Pusat Penyelidikan Fakulti Farmasi, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Received:
1 January 2019/Accepted: 18 July 2019
ABSTRAK
Kajian ini adalah bertujuan mengkaji potensi hidrogel sebagai templat nanoreaktor bagi menghasilkan zarah nano ferum oksida (FeNps). Hidrogel Poli-AkrilAmida (PAAm) telah dihasilkan dengan menggunakan kaedah pempolimeran radikal bebas. Keupayaan penyerapan air dalam hidrogel telah diuji dan nisbah pembengkakan tertinggi telah berlaku pada larutan penimbal pH10. Hidrogel yang terhasil telah dicirikan dengan menggunakan pengimbas mikroskop elektron (SEM) diikuti dengan spektroskopi serakan tenaga X-ray (SEM-EDEX) untuk menentukan jumlah peratusan ferum (Fe). Selepas proses pengkalsinan, zarah nano diekstrak daripada hidrogel PAAm dan seterusnya dianalisis menggunakan mikroskop transmisi elektron (TEM) dan analisis pembelauan sinar-X (XRD). Hasil TEM telah menunjukkan bahawa saiz zarah yang dihasilkan adalah antara 5 - 20 nm. Analisis XRD pula mengesahkan kehadiran zarah ferum oksida (Fe2O3). Keputusan ini menunjukkan bahawa hidrogel berpotensi digunakan sebagai nanoreaktor bagi menghasilkan zarah nano.
Kata kunci: Ferosenium; hidrogel poli-akril amida (PAAm); nanoreaktor; pengkalsinan; zarah nano ferum oksida (FeNps)
ABSTRACT
The aim of this study
was to investigate the feasibility of hydrogel to produce ferum oxide nanoparticles (FeNps). The polyacrylamide (PAAm) hydrogel was synthesized by using free radical
polymerization method. The hydrogel water uptake ability has been conducted and
the highest swelling ratio was occured at pH10 basic
buffer solution. Hydrogel was characterized by using scanning electron
microscopy (SEM) followed by energy dispersive X-ray spectroscopy (SEM-EDEX)
to determine the iron (Fe) percentage. After calcination process, nanoparticles
were extracted from the PAAm hydrogel and further analysed using transmission electron microscopy (TEM)
and X-ray diffraction analysis (XRD). TEM results
showed that the particles diameter was in ranged of 5 - 20 nm. XRD examination
confirmed the existance of ferum oxide particles (Fe2O3).
The result demonstrates the feasibility of using hydrogel as a promising nanoreactor.
Keywords: Calcination; feroccenium; ferum oxide
nanoparticles (FeNps); nanoreactor;
polyacrylamide (PAAm) hydrogel
REFERENCES
Abdullah, M.F., Azfaralariff, A. & Mat Lazim,
A. 2018. Methylene blue removal by using pectin-based hydrogels extracted from
dragon fruit peel waste using gamma and microwave radiation polymerization
techniques. Journal of Biomaterials Science: Polymer Edition 29(14):
1745-1763.
Agus, S. & Suwardi. 2009. Sintesis hydrogel
superabsorbent berbasis akrilamida dan asam akrilat pada kondisi atmosfer. Jurnal Penelitian Saintek14(1):
1-16.
Andarini, M., Mokhtarom, M., Mohd. Yamin, B., Mohd Amin, M.C.I.,
Hassan, N.I. & Mat Lazim, M.A.S. 2017. Aplikasi hidrogel daripada selulosa bakteria (BC-g-PAA) sebagai nanoreaktor bagi menghasilkan nanozarah ferum oksida (FeNps). Sains Malaysiana46(10):
1789-1795.
Antonio, F.B., Ivan,
J.S., Sierra, B.M., Fernandez, A.N., Javier, F.N., Manuel, M., Rubio, J.R.
& Enrique, L.C. 2009. Gels and microgels for nanotechnological application. Advances in Colloid and
Interface Science 147-148: 88-108.
Ashri, A., Yusof, M., Jamil, M., Abdullah, A., Yusoff,
S., Arip, M. & Lazim,
A. 2014. Physicochemical characterization of starch extracted from malaysian wild yam (Dioscorea Hispida Dennst.). Emirates
Journal of Food and Agriculture 26(8): 652-658.
Azman, I., Mutalib, S.A., Yusoff, M.S.F., Fazry, S., Noordin, A., Kumaran, M. & Lazim, A.M.
2016. Novel Dioscorea hispida starch-based hydrogels and their beneficial use as disinfectants. Journal
of Bioactive and Compatible Polymers 31(1): 42-59.
Erizal, A., Dewi, S. & Darmawan, P.D.
2002. Sintesis dan karaterisasi hydrogel poli(akrilamida) hasil iradiasi gamma. Prosiding Pertemuan Ilmiah Ilmu Pengetahuan dan Teknologi Bahan. m.s. 1411-2213.
Fahriye, S. & Nurettin, S. 2013. Poly(acrylamide-co-vinyl
sulfonic acid) p(AAm-co-VSA) hydrogel templates for
Co and Ni metal nanoparticle preparation and their use in hydrogen production. Journal
of Hydrogen Energy 38: 777-784.
Hakam, A., Abdul Rahman, I.,
Md. Jamil, M.S., Othaman, R., Mohd Amin, M.C.I. & Mat Lazim, M.A.S. 2015. Removal of
methylene blue dye in aqueous solution by sorption on a
bacterial-g-poly-(acrylic acid) polymer network hydrogel. Sains Malaysiana44(6): 827-834.
Mat Lazim,
A., Osman, A.H. & Mokhtarom, M. 2018. Kebolehserapan metilena biru oleh hidrogel selulosa bakteria teradiasi gamma menggunakan isoterma Langmuir dan Freundlich. Sains Malaysiana47(4): 715-723.
Liew, M., Rizafizah, O., Rozida K., Amin,
M.C.I.M. & Azwan, M.L. 2013. Synthesis of
hydrogel based on Nata De Coco and acrylic acid as co-monomer using free
radical polymerization method. Malaysian Journal of Analytical Sciences 18(2):
299-305.
Mahnaz, M., Mansor, A., Jelas, M.H., Farideh, N., Bezad, N., Zaki, M.R. & Jamileh, A.
2013. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical application. Molecules 18: 7533-7548.
Murali, Y.M., Kyungjae, L., Thathan, P. &
Kurt, E.G. 2007. Hydrogel networks as nanoreactors: A
novel approach to silver nanoparticles for antibacterial application. Polymer 48: 158-164.
Murali, Y.M., Vimala, K., Varsha, T., Varaprasad, K., Sreedhar, B., Bajpai, S.K. & Mohana, K.R.
2010. Controlling of silver nanoparticles structure by hydrogel network. Journal
of Colloid and Interface Science 342: 73-82.
Murthy, P.S.K., Murali, Y.M., Varaprasad, K., Sreedhar, B. & Raju, K.M. 2008. First successful design
of semi-IPN hydrogel-silver nanocomposite: A facile approach for antibacterial
application. Journal of Colloid and Interface Science 318: 217-224.
Ngah, W.S.W., Kamari, A.
& Koay, Y.J. 2004. Equilibrium and kinetics
studies of adsorption of copper (II) on chitosan and chitosan PVA/beads. International
Journal of Biological Macromolecules 34: 155-161.
Rozana, A.B. 2001. Tindak balas sebatian ferosenium dan pendopan ferosenium dalam filem PVC. Tesis Sarjana. Bangi: Universiti Kebangsaan Malaysia (tidak diterbitkan).
Ummi, H.A., Bohari, M.Y. & Azwan, M.L.
2012. Simple preparation of iron oxide nanoparticle by degradation of ferrocenium tetrechloroferat in
PNIPAM microgel system. Advanced Material Research 56: 554-556.
Vimala, K., Samba, K.S., Murali, Y.M., Sreedhar, B. & Mohana, K.R. 2009. Controlled silver nanoparticles
synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: A
rational methodology for antibacterial application. Carbohydrate Polymers 75:
463-471.
Zhang, H., Zhong, H., Zhang, L., Chen, S., Zhao, Y. & Zhu, Y.
2009. Synthesis and characterization of thermosensitive graft copolymer of N-isopropylacrylamide with
biodegradable carboxymethylchitosan. Carbohydrate
Polymer 77: 785-790.
Zhao, L., Luo, F., Wasikiewwicz, J.M., Mitomo, H., Nagasawa, N. & Yagi, T. 2008. Adsorption of humic acid from aqueous solution onto irradiation-crosslinked carboxymethyl. Bioresorce Technology 99(6): 1911-1917.
*Corresponding
author; email: azwanlazim@ukm.edu.my
|