Sains Malaysiana 48(9)(2019): 1947–1958

http://dx.doi.org/10.17576/jsm-2019-4809-16

 

A Systematic Review on Peripheral Blood-derived Mesenchymal Stem Cells as a Therapy for Cartilage Repair

(Ulasan Sistematik pada Sel Tunjang Mesenkima daripada Darah Periferal sebagai Terapi untuk Pembaikan Rawan)

 

RUFAIDAH OTHMAN1, PAN PAN CHONG1*, NAHRIZUL ADIB KADRI2 & TUNKU KAMARUL1

 

1Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 12 February 2018/Accepted: 1 July 2019

 

ABSTRACT

Comprehensive analysis showed that the popularity of research peripheral blood-derived mesenchymal stem cells for knee cartilage repair is still lacking, as they peripherally exist at a very low level. Despite its small cell number, peripheral blood is yet one of the most convenient sources of mesenchymal stem cells due to its less invasive method to harvest. This study aimed to systematically review the current evidence of peripheral blood-derived mesenchymal stem cells towards the repair of articular cartilage defect. A comprehensive literature search was performed to identify all in vivo studies reporting the structural outcome of articular cartilage repair in the knee following electronic databases: PubMed, WOS and SCOPUS. The in vitro characterizations of peripheral blood-derived mesenchymal stem cells were evaluated to enable quality assessment. Literature from 1934 to 2019 showed 4822 of total articles with only three findings related to pre-clinical studies were included in the analysis. The selection of animal model, type of transplantation, mobilization of the peripheral blood, in vitro culture condition, type of scaffold, assessments on the cartilage defect, and the outcome measures were heterogeneous. Evidence showed that mobilized peripheral blood-derived mesenchymal stem cells were more superior in repairing articular cartilage compared to those that were non-mobilized. These cells also showed a comparable capability in repairing articular cartilage than the commonly used bone marrow mesenchymal stem cells. Overall, more progress is needed to expand the usage of peripheral blood-derived mesenchymal stem cells from basic biological science to the translational studies in clinical practice.

 

Keywords: Circulating cell; knee osteoarthritis; mesenchymal stem cell; peripheral blood; pre-clinical

 

ABSTRAK

Analisis secara komprehensif menunjukkan bahawa kajian yang berkaitan dengan rawatan lutut yang melibatkan penggunaan sel stem mesenkima daripada darah periferal adalah masih pada tahap yang rendah kerana kuantiti sel stem tersebut yang amat rendah di dalam darah periferal. Namun begitu, proses memperoleh sel stem mesenkima daripada darah periferal adalah mudah kerana ia kurang invasif. Kajian ini adalah bertujuan untuk menyelidik kesemua penemuan semasa yang berkaitan dengan sel stem mesenkima daripada darah periferal, yang terlibat dalam meningkatkan pemulihan secara in vivo terhadap kerosakan rawan artikul. Carian kepustakaan telah dilakukan secara komprehensif dengan menggunakan pangkalan data elektronik seperti: PubMed, WOS dan SCOPUS. Pencirian in vitro untuk sel stem ini telah dinilai dalam menentukan tahap kualiti kajian. Kajian kepustakaan bermula dari tahun 1934 sehingga tahun 2019 menunjukkan bahawa daripada sejumlah 4822 artikel, hanya terdapat tiga kajian pra-klinikal yang berkaitan. Setiap kajian melibatkan pelbagai kriteria yang heterogen daripada segi pemilihan model haiwan, jenis transplan, kaedah mobilasi darah periferal, kondisi kultur in vitro, jenis rangka (skafold) yang digunakan, tahap kerosakan rawan serta kesan pemulihan. Bukti menunjukkan bahawa sel stem mesenkima yang diperoleh daripada darah periferal yang telah dimobilasi memiliki kebolehan yang lebih baik dalam memperbaiki rawan artikul berbanding dengan sel stem mesenkima yang tidak dimobilasi. Malah, sel ini juga mempunyai keupayaan pembaikian yang setanding dengan sel stem mesenkima yang sering diperoleh daripada sumsum tulang. Secara keseluruhannya, penggunaan sel stem mesenkima daripada darah periferal perlu diperluaskan lagi bermula daripada bidang asas sains biologi hingga ke kajian translasi yang melibatkan pengamalan secara klinikal.

 

Kata kunci: Darah periferal; osteoartritis lutut; peredaran sel; pre-klinikal; sel stem mesenkima

REFERENCES

Ahern, B.J., Parvizi, J., Boston, R. & Schaer, T.P. 2009. Preclinical animal models in single site cartilage defect testing: A systematic review. Osteoarthritis Cartilage 17(6): 705-173.

Anz, A., Saw, K., Jee, C., Merican, S., Ng, R., Ahmad, R. & Ragavanaidu, K. 2013. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: A randomized controlled trial. Arthroscopy: The Journal of Arthroscopic & Related Surgery 29(6): 27-28.

Bornes, T., Adesida, A. & Jomha, N. 2018. Articular cartilage repair with mesenchymal stem cells after chondrogenic priming: A pilot study. Tissue Engineering Part A 24(9-10): 761-774.

Chong, P.P., Selvaratnam, L., Abbas, A.A. & Kamarul, T. 2012. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. Journal of Orthopaedic Research 30(4): 634-642.

Chonheim, J.F. 1867. Über entzündung und eiterung. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 40: 1-79.

Fu, W., Zhou, C. & Yu, J. 2013. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. The American Journal of Sports Medicine 42(3): 592-601.

Getgood, A., Henson, F., Skelton, C., Brooks, R., Guehring, H., Fortier, L. & Rushton, N. 2014. Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. Journal of Experimental Orthopaedics 1(1): 13. doi: 10.1186/s40634- 014-0013-x.

Hayes, D.W., Brower, R.L. & John, K.J. 2001. Articular cartilage: Anatomy, injury, and repair. Clinics in Podiatric Medicine and Surgery 18(1): 35-53.

Hinsenkamp, M. & Collard, J. 2014. Growth factors in orthopaedic surgery: Demineralized bone matrix versus recombinant bone morphogenetic proteins. International Orthopaedics 39(1): 137-147.

Hopper, N., Wardale, J., Brooks, R., Power, J., Rushton, N. & Henson, F. 2015. Peripheral blood mononuclear cells enhance cartilage repair in in vivo osteochondral defect model. PLoS ONE 10(8): e0133937.

Hurtig, M.G., Buschmann, M.D., Fortier, L.A., Hoemann, C.D., Hunziker, E.B., Jurvelin, J.S., Mainil-Varlet, P., Mcllwraith, C.W., Sah, R.L. & Whiteside, R.A. 2011. Preclinical studies for cartilage repair: Recommendations from the International Cartilage Repair Society. Cartilage 2(2): 137-152.

Jansen, J., Thompson, J.M., Dugan, M.J., Nolan, P., Wiemann, M.C., Birhiray, R., Henslee-Downey, P.J. & Akard, L.P. 2002. Peripheral blood progenitor cell transplantation. Therapeutic Apheresis 6(1): 5-14.

Jia, Z., Liu, Q., Liang, Y., Li, X., Xu, X., Ouyang, K., Xiong, J., Wang, D. & Duan, L. 2018. Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells. Journal of Translational Medicine 16(1): 123.

Jiang, T., Xu, G., Wang, Q., Yang, L., Zheng, L., Zhao, J. & Zhang, X. 2017. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death & Disease 8(6): 2851-2851.

Jeuken, R., Roth, A., Peters, R., van Donkelaar, C., Thies, J., van Rhijn, L. & Emans, P. 2016. Polymers in cartilage defect repair of the knee: Current status and future prospects. Polymers 8(6): 219.

Liberati, A., Altman, D., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Loannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J. & Moher, D. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. British Medical Journal 339: b2700.

Linn, F.C. & Sokoloff, L. 1965. Movement and composition of interstitial fluid of cartilage. Arthritis & Rheumatology 8(4): 481-494.

Loh, Q.L. & Choong, C. 2013. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Engineering Part B: Reviews 19(6): 485-502.

Morrey, B. 2011. Osteochondral lesions of the knee: A new one-step repair technique with bone-marrow-derived cells. The Journal of Bone and Joint Surgery (American) 92: 2-11.

Nakamura, T., Sekiya, I., Muneta, T., Hatsushika, D., Horie, M., Tsuji, K., Kawarasaki, T., Watanabe, A., Hishikawa, S., Fujimoto, Y., Tanaka, H. & Kobayashi, E. 2012. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy 14(3): 327-338.

Orth, P., Meyer, H., Goebel, L., Eldracher, M., Ong, M., Cucchiarini, M. & Madry, H. 2013. Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. Journal of Orthopaedic Research 31(11): 1772-1779.

Saw, K., Anz, A., Merican, S., Tay, Y., Ragavanaidu, K., Jee, C. & McGuire, D. 2011. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: A report of 5 cases with histology. Arthroscopy: The Journal of Arthroscopic & Related Surgery 27(4): 493-506.

Sophia, F.A., Bedi, A. & Rodeo, S. 2009. The basic science of articular cartilage: Structure, composition, and function. Sports Health: A Multidisciplinary Approach 1(6): 461-468.

Tamaddon, M., Wang, L., Liu, Z. & Liu, C. 2018. Osteochondral tissue repair in osteoarthritic joints: Clinical challenges and opportunities in tissue engineering. Bio-Design and Manufacturing 1(2): 101-114.

Teeple, E., Jay, G.D., Elsaid, K.A. & Fleming, B.C. 2013. Animal models of osteoarthritis: Challenges of model selection and analysis. The American Association of Pharmaceutical Scientists Journal 15(2): 438-446.

Ullah, I., Subbarao, R.B. & Rho, G.J. 2015. Human mesenchymal stem cells - Current trends and future prospective. Bioscience Reports 35(2): e00191.

van den Borne, M.P., Raijmakers, N., Vanlauwe, J., Victor, J., de Jong, S.N., Bellemans, J. & Saris, D.B. 2007. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage 15(12): 1397-1402.

Wakitani, S., Goto, T., Pineda, S., Young, R.G., Mansour, J.M., Caplan, A.I. & Goldberg, V.M. 1994. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. Journal of Bone and Joint Surgery-American 76(4): 579-592.

Wang, X., Li, Y., Han, R., He, C., Wang, G., Wang, J., Zheng, J., Pei, M. & Wei, L. 2014. Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair. PLoS ONE 9(12): e116061.

Xu, B., Wang, R., Wang, H. & Xu, H. 2017. Co-culture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering. Bioscience Reports 37(6): BSR20170804.

Zachar, L., Bačenková, D. & Rosocha, J. 2016. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. Journal of Inflammation Research 9: 231-240.

Zhao, Q., Wang, S., Tian, J., Wang, L., Dong, S., Xia, T. & Wu, Z. 2013. Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair. Journal of Materials Science: Materials in Medicine 24(3): 793-801.

 

*Corresponding author; email: pan2chong@gmail.com

 

 

 

previous