Sains Malaysiana 48(9)(2019): 1947–1958
http://dx.doi.org/10.17576/jsm-2019-4809-16
A Systematic Review on
Peripheral Blood-derived Mesenchymal Stem Cells as a Therapy for Cartilage
Repair
(Ulasan Sistematik pada
Sel Tunjang Mesenkima daripada Darah Periferal sebagai Terapi untuk Pembaikan
Rawan)
RUFAIDAH OTHMAN1, PAN PAN CHONG1*, NAHRIZUL ADIB KADRI2 & TUNKU KAMARUL1
1Tissue
Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research
and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine,
University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department
of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
Received:
12 February 2018/Accepted: 1 July 2019
ABSTRACT
Comprehensive analysis
showed that the popularity of research peripheral blood-derived
mesenchymal stem cells for knee cartilage repair is still lacking,
as they peripherally exist at a very low level. Despite its small
cell number, peripheral blood is yet one of the most convenient
sources of mesenchymal stem cells due to its less invasive method
to harvest. This study aimed to systematically review the current
evidence of peripheral blood-derived mesenchymal stem cells towards
the repair of articular cartilage defect. A comprehensive literature
search was performed to identify all in vivo studies reporting the structural
outcome of articular cartilage repair in the knee following electronic
databases: PubMed, WOS and SCOPUS.
The in vitro characterizations of peripheral blood-derived
mesenchymal stem cells were evaluated to enable quality assessment.
Literature from 1934 to 2019 showed 4822 of total articles with
only three findings related to pre-clinical studies were included
in the analysis. The selection of animal model, type of transplantation,
mobilization of the peripheral blood, in vitro culture condition,
type of scaffold, assessments on the cartilage defect, and the outcome
measures were heterogeneous. Evidence showed that mobilized peripheral
blood-derived mesenchymal stem cells were more superior in repairing
articular cartilage compared to those that were non-mobilized. These
cells also showed a comparable capability in repairing articular
cartilage than the commonly used bone marrow mesenchymal stem cells.
Overall, more progress is needed to expand the usage of peripheral
blood-derived mesenchymal stem cells from basic biological science
to the translational studies in clinical practice.
Keywords: Circulating
cell; knee osteoarthritis; mesenchymal stem cell; peripheral blood;
pre-clinical
ABSTRAK
Analisis secara komprehensif
menunjukkan bahawa kajian yang berkaitan dengan rawatan lutut yang
melibatkan penggunaan sel stem mesenkima daripada darah periferal
adalah masih pada tahap yang rendah kerana kuantiti sel stem tersebut
yang amat rendah di dalam darah periferal. Namun begitu, proses
memperoleh sel stem mesenkima daripada darah periferal adalah mudah
kerana ia kurang invasif. Kajian ini adalah bertujuan untuk menyelidik
kesemua penemuan semasa yang berkaitan dengan sel stem mesenkima
daripada darah periferal, yang terlibat dalam meningkatkan pemulihan
secara in vivo terhadap kerosakan rawan artikul. Carian kepustakaan
telah dilakukan secara komprehensif dengan menggunakan pangkalan
data elektronik seperti: PubMed, WOS dan SCOPUS. Pencirian in vitro
untuk sel stem ini telah dinilai dalam menentukan tahap kualiti
kajian. Kajian kepustakaan bermula dari tahun 1934 sehingga tahun
2019 menunjukkan bahawa daripada sejumlah 4822 artikel, hanya terdapat
tiga kajian pra-klinikal yang berkaitan. Setiap kajian melibatkan
pelbagai kriteria yang heterogen daripada segi pemilihan model haiwan,
jenis transplan, kaedah mobilasi darah periferal, kondisi kultur
in vitro, jenis rangka (skafold) yang digunakan, tahap kerosakan
rawan serta kesan pemulihan. Bukti menunjukkan bahawa sel stem mesenkima
yang diperoleh daripada darah periferal yang telah dimobilasi memiliki
kebolehan yang lebih baik dalam memperbaiki rawan artikul berbanding
dengan sel stem mesenkima yang tidak dimobilasi. Malah, sel ini
juga mempunyai keupayaan pembaikian yang setanding dengan sel stem
mesenkima yang sering diperoleh daripada sumsum tulang. Secara keseluruhannya,
penggunaan sel stem mesenkima daripada darah periferal perlu diperluaskan
lagi bermula daripada bidang asas sains biologi hingga ke kajian
translasi yang melibatkan pengamalan secara klinikal.
Kata kunci: Darah periferal; osteoartritis lutut; peredaran sel;
pre-klinikal; sel stem mesenkima
REFERENCES
Ahern, B.J., Parvizi, J., Boston, R. & Schaer, T.P. 2009.
Preclinical animal models in single site cartilage defect testing: A systematic
review. Osteoarthritis Cartilage 17(6): 705-173.
Anz, A., Saw, K., Jee, C., Merican, S., Ng, R., Ahmad, R. &
Ragavanaidu, K. 2013. Articular cartilage regeneration with autologous
peripheral blood stem cells versus hyaluronic acid: A randomized controlled
trial. Arthroscopy: The Journal of Arthroscopic & Related Surgery 29(6):
27-28.
Bornes, T., Adesida, A. & Jomha, N. 2018. Articular cartilage
repair with mesenchymal stem cells after chondrogenic priming: A pilot study. Tissue
Engineering Part A 24(9-10): 761-774.
Chong, P.P., Selvaratnam, L., Abbas, A.A. & Kamarul, T. 2012.
Human peripheral blood derived mesenchymal stem cells demonstrate similar
characteristics and chondrogenic differentiation potential to bone marrow
derived mesenchymal stem cells. Journal of Orthopaedic Research 30(4):
634-642.
Chonheim, J.F. 1867. Über entzündung und eiterung. Archiv für
Pathologische Anatomie und Physiologie und für Klinische Medicin 40: 1-79.
Fu, W., Zhou, C. & Yu, J. 2013. A new source of mesenchymal
stem cells for articular cartilage repair: MSCs derived from mobilized
peripheral blood share similar biological characteristics in vitro and
chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. The
American Journal of Sports Medicine 42(3): 592-601.
Getgood, A., Henson, F., Skelton, C., Brooks, R., Guehring, H.,
Fortier, L. & Rushton, N. 2014. Osteochondral tissue engineering using a
biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. Journal
of Experimental Orthopaedics 1(1): 13. doi: 10.1186/s40634- 014-0013-x.
Hayes, D.W., Brower, R.L. & John, K.J. 2001. Articular
cartilage: Anatomy, injury, and repair. Clinics in Podiatric Medicine and
Surgery 18(1): 35-53.
Hinsenkamp, M. & Collard, J. 2014. Growth factors in
orthopaedic surgery: Demineralized bone matrix versus recombinant bone
morphogenetic proteins. International Orthopaedics 39(1): 137-147.
Hopper, N., Wardale, J., Brooks, R., Power, J., Rushton, N. &
Henson, F. 2015. Peripheral blood mononuclear cells enhance cartilage repair in in vivo osteochondral defect model. PLoS ONE 10(8): e0133937.
Hurtig, M.G., Buschmann, M.D., Fortier, L.A., Hoemann, C.D.,
Hunziker, E.B., Jurvelin, J.S., Mainil-Varlet, P., Mcllwraith, C.W., Sah, R.L.
& Whiteside, R.A. 2011. Preclinical studies for cartilage repair:
Recommendations from the International Cartilage Repair Society. Cartilage 2(2):
137-152.
Jansen, J., Thompson, J.M., Dugan, M.J., Nolan, P., Wiemann, M.C.,
Birhiray, R., Henslee-Downey, P.J. & Akard, L.P. 2002. Peripheral blood
progenitor cell transplantation. Therapeutic Apheresis 6(1): 5-14.
Jia, Z., Liu, Q., Liang, Y., Li, X., Xu, X., Ouyang, K., Xiong,
J., Wang, D. & Duan, L. 2018. Repair of articular cartilage defects with
intra-articular injection of autologous rabbit synovial fluid-derived
mesenchymal stem cells. Journal of Translational Medicine 16(1): 123.
Jiang, T., Xu, G., Wang, Q., Yang, L., Zheng, L., Zhao, J. &
Zhang, X. 2017. In vitro expansion impaired the stemness of early
passage mesenchymal stem cells for treatment of cartilage defects. Cell
Death & Disease 8(6): 2851-2851.
Jeuken, R., Roth, A., Peters, R., van Donkelaar, C., Thies, J.,
van Rhijn, L. & Emans, P. 2016. Polymers in cartilage defect repair of the
knee: Current status and future prospects. Polymers 8(6): 219.
Liberati, A., Altman, D., Tetzlaff, J., Mulrow, C., Gøtzsche,
P.C., Loannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J. & Moher,
D. 2009. The PRISMA statement for reporting systematic reviews and
meta-analyses of studies that evaluate healthcare interventions: Explanation
and elaboration. British Medical Journal 339: b2700.
Linn, F.C. & Sokoloff, L. 1965. Movement and composition of
interstitial fluid of cartilage. Arthritis & Rheumatology 8(4):
481-494.
Loh, Q.L. & Choong, C. 2013. Three-dimensional scaffolds for
tissue engineering applications: Role of porosity and pore size. Tissue
Engineering Part B: Reviews 19(6): 485-502.
Morrey, B. 2011. Osteochondral lesions of the knee: A new one-step
repair technique with bone-marrow-derived cells. The Journal of Bone and
Joint Surgery (American) 92: 2-11.
Nakamura, T., Sekiya, I., Muneta, T., Hatsushika, D., Horie, M.,
Tsuji, K., Kawarasaki, T., Watanabe, A., Hishikawa, S., Fujimoto, Y., Tanaka,
H. & Kobayashi, E. 2012. Arthroscopic, histological and MRI analyses of
cartilage repair after a minimally invasive method of transplantation of
allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy 14(3): 327-338.
Orth, P., Meyer, H., Goebel, L., Eldracher, M., Ong, M.,
Cucchiarini, M. & Madry, H. 2013. Improved repair of chondral and
osteochondral defects in the ovine trochlea compared with the medial condyle. Journal
of Orthopaedic Research 31(11): 1772-1779.
Saw, K., Anz, A., Merican, S., Tay, Y., Ragavanaidu, K., Jee, C.
& McGuire, D. 2011. Articular cartilage regeneration with autologous
peripheral blood progenitor cells and hyaluronic acid after arthroscopic
subchondral drilling: A report of 5 cases with histology. Arthroscopy: The
Journal of Arthroscopic & Related Surgery 27(4): 493-506.
Sophia, F.A., Bedi, A. & Rodeo, S. 2009. The basic science of
articular cartilage: Structure, composition, and function. Sports Health: A
Multidisciplinary Approach 1(6): 461-468.
Tamaddon, M., Wang, L., Liu, Z. & Liu, C. 2018. Osteochondral
tissue repair in osteoarthritic joints: Clinical challenges and opportunities
in tissue engineering. Bio-Design and Manufacturing 1(2): 101-114.
Teeple, E., Jay, G.D., Elsaid, K.A. & Fleming, B.C. 2013.
Animal models of osteoarthritis: Challenges of model selection and analysis. The
American Association of Pharmaceutical Scientists Journal 15(2): 438-446.
Ullah, I., Subbarao, R.B. & Rho, G.J. 2015. Human mesenchymal
stem cells - Current trends and future prospective. Bioscience Reports 35(2):
e00191.
van den Borne, M.P., Raijmakers, N., Vanlauwe, J., Victor, J., de
Jong, S.N., Bellemans, J. & Saris, D.B. 2007. International Cartilage
Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores
validated for use in Autologous Chondrocyte Implantation (ACI) and
microfracture. Osteoarthritis Cartilage 15(12): 1397-1402.
Wakitani, S., Goto, T.,
Pineda, S., Young, R.G., Mansour, J.M., Caplan, A.I. & Goldberg, V.M. 1994.
Mesenchymal cell-based repair of large, full-thickness defects of articular
cartilage. Journal of Bone and Joint Surgery-American 76(4): 579-592.
Wang, X., Li, Y., Han,
R., He, C., Wang, G., Wang, J., Zheng, J., Pei, M. & Wei, L. 2014.
Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone
morphogenetic protein-2 and transforming growth factor-β3 gene promoted
pig cartilage defect repair. PLoS ONE 9(12): e116061.
Xu, B., Wang, R., Wang,
H. & Xu, H. 2017. Co-culture of allogenic DBM and BMSCs in the knee joint
cavity of rabbits for cartilage tissue engineering. Bioscience Reports 37(6):
BSR20170804.
Zachar, L.,
Bačenková, D. & Rosocha, J. 2016. Activation, homing, and role of the
mesenchymal stem cells in the inflammatory environment. Journal of
Inflammation Research 9: 231-240.
Zhao, Q., Wang, S.,
Tian, J., Wang, L., Dong, S., Xia, T. & Wu, Z. 2013. Combination of bone
marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit
articular cartilage repair. Journal of Materials Science: Materials in
Medicine 24(3): 793-801.
*Corresponding
author; email: pan2chong@gmail.com
|