Sains Malaysiana 48(9)(2019): 2021–2028
http://dx.doi.org/10.17576/jsm-2019-4809-23
A Study on the
Atmospheric Dispersion of Radionuclide Released from TRIGA MARK II Reactor
using Gaussian Plume Model
(Suatu Kajian Penyebaran
Atmosfera pada Radionuklid Terbebas daripada Reaktor TRIGA
MARK II menggunakan Model Gaussian Plum)
JEYLEENNY RANTY JANSON1*, SITI NUR AIN
BINTI SULAIMAN1, SUHAIMI BIN KASSIM2, NUR
SYAHIRAH BINTI MUSZAKHIR1, FAIZAL MOHAMED1, SYAZWANI MOHD FADZIL1 & KHOO KOK SIONG1
1Nuclear Technology
Research Centre, School of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Reactor Technology
Centre, Technical Support Division, Malaysia Nuclear Agency, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
Received:
8 April 2019/Accepted: 3 July 2019
ABSTRACT
TRIGA MARK II reactor is a research facility and site for neutron activation
analysis. Should there be fuel rod damage for the first time, amongst its
possible causes are human and environmental factor. Consequently, the study
objectives were to determine types and released rates of radionuclides
dispersed to air and deposited on land through core inventory using ORIGEN2
Code; to determine the concentrations of radionuclides released to air and
deposited on land using Gaussian Plume Model; and to determine the exposure
doses of radionuclides released to air and deposited on land using exposure
dose equation. Core inventory identified types of radionuclides which were Br,
I, Kr and Xe. The chosen radioisotopes of Br-83, I-131, Kr-85 and Xe-135 were
based on its negative impact on human body system. The maximum released rate of
Br-83 was 0.522×105 Bq/s; I-131 was 2.818×105 Bq/s;
Kr-85 was 6.447×105 Bq/s and Xe-135 was 4.850×105 Bq/s,
respectively. The maximum concentration in the atmosphere for Br-83 was 1.981
Bq/m3; I-131 was 0.062 Bq/m3;
Kr-85 was 25.034 Bq/m3 and Xe-135 was 4.248 Bq/m3.
The annual exposure doses for four selected radionuclides were 1326 μSv/yr
(300 m), 119 μSv/yr (1000 m) and 7.463 μSv/yr (4000 m) for Category
B, whereas for Category were 194 μSv/yr (300 m), 17.440 μSv/yr (1000
m) and 1.090 μSv/yr (4000 m), respectively. Conclusively, this study shows
that in case of fuel rod damage on TRIGA MARK II reactor,
radionuclide atmospheric dispersion at a distance of 300 m (Category B) was
exceeding the standard annual exposure dose limit (1000 μSv/yr).
Keywords: Atmospheric
dispersion; exposure dose; Gaussian Plume Model; TRIGA MARK II
ABSTRAK
Reaktor TRIGA MARK II
merupakan sebuah insitut penyelidikan dan tempat untuk menjalankan analisis
pengaktifan neutron. Sekiranya berlaku kerosakan rod bahan api buat pertama
kalinya, antara sebab yang berkemungkinan adalah faktor manusia berserta
persekitaran. Akibatnya objektif kajian adalah untuk menentukan jenis dan kadar
pelepasan radionuklid yang tersebar ke udara dan mendap dalam tanah melalui
inventori teras menggunakan Kod ORIGEN2; untuk menentukan
kepekatan radionuklid terbebas ke udara dan mendap dalam tanah menggunakan
Model Kepulan Gaussian; dan untuk menentukan dos dedahan radionuklid yang
terbebas ke udara dan mendap dalam tanah menggunakan rumus dos dedahan.
Inventori teras mengenal pasti jenis radionuklid yang terbebas berserta
isotopnya iaitu adalah Br, I, Kr dan Xe. Radionuklid terpilih iaitu Br-83,
I-131, Kr-85 dan Xe-135 adalah berdasarkan impak negatif terhadap sistem tubuh
badan manusia. Kadar pelepasan maksimum masing-masing bagi Br-83 adalah
0.522×105 Bq/s; I-131 adalah 2.818×105 Bq/s;
Kr-85 adalah 6.447×105 Bq/s dan Xe-135 adalah 4.850×105 Bq/s.
Kepekatan maksimum di atmosfera bagi Br-83 adalah 1.981 Bq/m3;
I-131 adalah 0.062 Bq/m3; Kr-85 adalah 25.034 Bq/m3 dan
Xe-135 adalah 4.248 Bq/m3. Dos dedahan tahunan untuk empat
radionuklid terpilih masing-masing adalah 1326 μSv/thn (300 m), 119
μSv/thn (1000 m) dan 7.463 μSv/thn (4000 m) bagi Kategori B manakala
bagi Kategori D adalah 194 μSv/thn (300 m), 17.440 μSv/thn (1000 m)
dan 1.090 μSv/thn (4000 m). Kesimpulannya, keputusan kajian menunjukkan
sekiranya berlaku kerosakan rod bahan api pada reaktor TRIGA MARK II,
penyebaran atmosfera oleh radionuklid pada jarak 300 m (Kategori B) adalah
melebihi had dos dedahan piawai (1000 μSv/thn) yang dibenarkan.
Kata kunci: Dos dedahan; Model Kepulan Gaussian; penyebaran
atmosfera; TRIGA MARK II
REFERENCES
ARL. 2018. Pasquill stability classes.
https://ready.arl.noaa.gov/ READYpgclass.php. Accessed on May 2018.
Bailey, D.T. & Touma, J.S. 1995. User's Guide for the Industrial
Source Complex (ISC3) Dispersion Models. Volume II- Description
of Model Algorithms. North Carolina. Environmental Protection Agency
(EPA).
Benamrane, Y., Wybo, J. & Armand, P. 2013. Chernobyl and
Fukushima nuclear accidents: What has changed in the use of atmospheric
dispersion modeling? Journal of Environmental Radioactivity 126(1):
239-252.
Chambers, S.D., Wang, F., Williams, A.G., Xiaodong, D., Zhang, H.,
Lonati, G. & Crawford, J. 2015. Quantifying the influences of atmospheric
stability on air pollution in Lanzhou, China, using a radon-based stability
monitor. Atmospheric Environment 107: 233-243.
Demange, D., Borisevich, O., Gramlich, N., Wagner, R. & Welte,
S. 2013. Zeolite membranes and palladium membrane reactor for tritium
extraction from the breeder blankets of ITER and DEMO. Fusion Engineering
and Design 88(9- 10): 2396-2399.
Doi, T., Masumoto, K., Toyoda, A. & Tanaka, A. 2013.
Anthropogenic radionuclides in the atmosphere observed at Tsukuba:
Characteristics of the radionuclides derived from Fukushima. Journal of
Environmental Radioactivity 122: 55-62.
Green, A.E.S., Singhal, R.P. & Venkateswar, R. 1980. Analytic
extensions of the gaussian plume model. Journal of the Air Pollution Control
Association 30(7): 773-776.
ICRP. 2006. Radiation Overview on External Eposure and Doses
Calculation. International Commission on Radiological Protection,
Publication 26/30, Argonne National Laboratory, USA.
Imanaka, T., Hayashi, G. & Endo, S. 2015. Comparison of the
accident process, radioactivity release and ground contamination between
Chernobyl and Fukushima-1. Journal of Radiation Research 56: 56-61.
Long, N.Q., Truong, Y., Hien, P.D., Binh, N.T., Sieu, L.N., Giap,
T.V. & Phan, N.T. 2012. Atmospheric radionuclides from the Fukushima
Dai-ichi nuclear reactor accident observed in Vietnam. Journal of
Environmental Radioactivity 111: 53-58.
Malaysia Nuclear Agency. 2018. Education and training. http://
www.nuclearmalaysia.gov.my/malay/. Accessed on 11 May 2018.
Marzo, G.A. 2014. Atmospheric transport and deposition of
radionuclides released after the Fukushima Dai-chi accident and resulting
effective dose. Atmospheric Environment 94: 709-722.
Muswema, J.L., Darko,
E.O., Gbadago, J.K. & Boafo, E.K. 2014. Annals of nuclear energy
atmospheric dispersion modeling and radiological safety analysis for a
hypothetical accident of Ghana Research Reactor-1 (GHARR-1). Annals of
Nuclear Energy 68: 239-246.
Nadia Hamid. 2018. Tempias
Taufan Lan pada Malaysia. https:// www.bharian.com.my/berita/nasional/2017/10/340180/
panas-terik-kesan-tempias-taufan-lan. Accessed on 12 May 2018.
Ohnishi, T. 2012. The disaster
at Japan's Fukushima-Daiichi nuclear power plant after the March
11, 2011 earthquake and tsunami, and the resulting spread of radioisotope
contamination. Radiation Research 177: 1-14.
Potter, C.A. 2008. Human
alimentary tract model for radiological protection. Health Physics 94(4):
373-375.
Preston, J.F. 2013. Overview
of Level 3 PSA-Assessment of Off-site Consequences. International Atomic
Energy Agency. 22-26 July 2013. PNRI Manila, Philippines.
Salame-Alfie, A. 2001.
Assessing dose of the representative person for the purpose of radiation
protection of the public and the optimization of the radiological protection:
Broadening the process. In Health Safety. ICRP Publication. p. 106.
Slade, H.D. 1968.
Meteorology and atomic energy. National Technical Information Service, U.S
Department of Commerce, Springfield, Virginia, U.S.
Šömen Joksić, A.
& Katz, S.A. 2015. Chelation therapy for treatment of systemic intoxication
with uranium: A review. Journal of Environmental Science and Health, Part A 50(14):
1479-1488.
Srinivas, C.V.,
Venkatesan, R., Baskaran, R., Rajagopal, V. & Venkatraman, B. 2012.
Regional scale atmospheric dispersion simulation of accidental releases of
radionuclides from Fukushima Dai-ichi reactor. Atmospheric Environment 61:
66-84.
Usang, M.D., Hamzah,
N.S., Abi, M.J.B., Rawi, M.M.Z. & Abu, M.P. 2015. TRIGA MARK-II Source
Term: AIP Conference Proceedings. Advancing Nuclear Research and Energy
Development 1584: 45-49.
*Corresponding
author; email: jeyleennyrantyjanson@gmail.com
|