Sains Malaysiana 48(9)(2019):
2029–2039
http://dx.doi.org/10.17576/jsm-2019-4809-24
Atomistic Simulations of
Nanoindentation Response of Irradiation Defects in Iron
(Simulasi Atomistik
bagi Tindak Balas Pelekukan Nano bagi Kecacatan Penyinaran dalam Besi)
M. MUSTAFA
AZEEM1,
QINGYU
WANG*1
& MUHAMMAD ZUBAIR2
1College of Nuclear
Science and Technology, Harbin Engineering University, Harbin 150001, China
2Department of Nuclear
Engineering, University of Sharjah, United Arab Emirates
Received: 25 February
2019/Accepted: 12 July 2019
ABSTRACT
Radiation response of
a material is a consequence of defects' evolution in any radiation
damage event. The radiation-induced defects can significantly alter
the mechanical properties of a material. Radiation damage initiates
from incident neutron by bombardment on solid material causing production
and evolution of Frenkel defects. Since voids are formed due to
aggregation of a large number of vacancies that cause dimensional
changes and hence irradiation-induced swelling. In order to characterize
the effect of irradiation defects, we have performed molecular dynamics
(MD) simulations to investigate nanoindentation response
of point defects and voids in Fe and their effects on mechanical
parameters. The radial effect of voids and their interaction mechanism
is also explored by nanoindentation simulation. It has been found
that most of the dislocation produced are <111> and <100>
during nanoindentation in all simulated models. There will be an
increase in dislocation density which will harden the material and
reduce its toughness. The mechanical parameters such as hardness
H and reduced elastic modulus Er of irradiation defects are calculated
from P-h curves. It is found that both H & Er of
the point defects and voids are lower than the perfect model.
Keywords: Elastic
modulus; hardness; irradiation defects; molecular dynamics simulations;
nanoindentation
ABSTRAK
Tindak balas sinaran
sesuatu bahan adalah kesan daripada evolusi kecacatan dalam kejadian kerosakan
sinaran. Punca kecacatan aruhan sinaran dengan ketara boleh mengubah sifat
mekanik bahan. Kecacatan sinaran yang dimulakan daripada kejadian neutron dengan
pembedilan pada bahan pepejal menyebabkan pengeluaran dan evolusi kecacatan
Frenkel. Lompang terbentuk kerana pengagregatan sebilangan besar kekosongan
yang menyebabkan perubahan dimensi dan bengkak teraruh penyinaran. Untuk
mencirikan kesan kecacatan penyinaran, simulasi molekul dinamik (MD)
telah dijalankan untuk mengkaji tindak balas pelekukan nano kecacatan titik dan
lompang pada Fe dan kesannya terhadap parameter mekanik. Kesan jejari lompang
dan mekanisme interaksinya juga diterokai oleh simulasi pelekukan nano.
Didapati bahawa kebanyakan kehelan yang dihasilkan adalah <111> dan
<100> semasa pelekukan-nano dalam semua model simulasi. Terdapat
peningkatan dalam ketumpatan perkehelan yang akan mengeraskan bahan dan
mengurangkan keliatan. Parameter mekanik seperti kekerasan H dan pengurangan
sinaran kecacatan modulus elastik Er akan dihitung bermula dari
lengkung P-h. Didapati bahawa kedua-dua titik cacat dan lompang H & Er
adalah lebih rendah berbanding model yang sempurna.
Kata kunci: Kecacatan
sinaran; kekerasan; modulus elastik; pelekukan nano; simulasi molekul dinamik
REFERENCES
Abu-shams
Mohammad. & Ishraq Shabib. 2017. Effect of voids on nanoindentation
response of Fe-10%Cr alloys using molecular dynamics simulation. Material
Express 7(5): 329-340.
Ackland,
G.J., Mendelev, M.I., Srolovitz, D.J., Han, S. & Barashev, A.V. 2004.
Development of an interatomic potential for phosphorus impurities in
α-Iron. Journal of Physics Condensed Matter 16(27).
https://doi.org/10.1088/0953- 8984/16/27/003.
Azevedo,
C.R.F. 2011. Selection of fuel cladding material for nuclear fission reactors. Engineering
Failure Analysis 18(8): 1943-1962.
Bacon,
D.J. & De Rubia, T.D. 1994. Molecular dynamics computer simulations of
displacement cascades in metals. Journal of Nuclear Materials 216:
275-290.
Cheong,
W.C.D. & Zhang, L.C. 2006. Molecular dynamics simulation of phase
transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11(2000): 173-180.
Christopher,
D., Smith, R. & Richter, A. 2001. Atomistic modelling of nanoindentation in
iron and silver. Nanotechnology 12(3): 372-383.
Dalmau,
R., Franke, O., Biener, M., Biener, J., Hodge, A. & Alcala, J. 2012. Planar
defect nucleation and annihilation mechanisms in nanocontact plasticity of
metal surfaces. Physical Review Letters 075502(8): 17-21.
Du,
X., Zhao, H., Zhang, L., Yang, Y., Xu, H., Fu, H. & Li, L. 2015. Molecular
dynamics investigations of mechanical behaviours in monocrystalline silicon due
to nanoindentation at cryogenic temperatures and room temperature. Scientific
Reports 5(10): 16275.
García
Ferré, F., Mairov, A., Ceseracciu, L., Serruys, Y., Trocellier, P., Baumier,
C., Kaïtasov, O., Brescia, R., Gastaldi, D., Vena, P., Beghi, M.G., Beck, L.,
Sridharan, K. & Di Fonzo, F. 2016. Radiation endurance in Al2O3
nanoceramics. Scientific Reports 6(8): 33478.
Kilymis,
D.A., Delaye, J.M. & Ispas, S. 2016. Nanoindentation of the pristine and
irradiated forms of a sodium borosilicate glass: Insights from molecular
dynamics simulations. Journal of Chemical Physics 145(4): 044505.
Kohnert,
A.A., Wirth, B.D. & Capolungo, L. 2018. Modeling microstructural evolution
in irradiated materials with cluster dynamics methods: A Review. Computational
Materials Science 149: 442-459.
Lee,
Y., Park, J.Y., Kim, S.Y., Jun, S. & Im, S. 2005. Atomistic simulations of
incipient plasticity under Al(111) nanoindentation. Mechanics of Materials 37:
1035-1048.
Liu,
X., Miao, Y., Li, M., Kirk, M.A., Maloy, S.A. & Stubbins, J.F. 2017.
Ion-irradiation-induced microstructural Modi Fi cations in ferritic/martensitic
steel T91. Journal of Nuclear Materials 490: 305-316.
Eldrup,
M. & Singh, B.N. 2013. Cavity nucleation and growth during helium
implantation and neutron irradiation of fe and steel cavity nucleation and
growth during helium implantation and neutron irradiation of Fe and steel. Journal
of Physics Conference Series 443: 012023.
Mazaheri Yousef, Ahmad
Kermanpur. & Abbas Najafizadeh. 2015. Nanoindentation study of
ferrite-martensite dual phase steels developed by a new thermomechanical
processing. Materials Science and Engineering A 639: 8-14.
Nakai Ryosuke, Kiyohiro
Yabuuchi, Shuhei Nogami. & Akira Hasegawa. 2016. The effect of voids on the
hardening of body-centered cubic Fe. Journal of Nuclear Materials 471:
233-238.
Nordlund, K., Zinkle,
S.J., Sand, A.E., Granberg, F., Averback, R.S., Stoller, R.E., Suzudo, T.,
Malerba, L., Banhart, F., Weber, W.J., Willaime, F., Dudarev, S.L. &
Simeone, D. 2018. Primary radiation damage: A review of current understanding
and models. Journal of Nuclear Materials 512: 450-479.
Pharr, G.M. 1992. An
improved technique for determining hardness and elastic modulus using load and
displacement sensing indentation experiments. Journal of Materials Research 7(6):
1564-1583.
Plimpton, S. 1995. Fast
parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics 117(1994): 1-19.
https://doi.org/10.1006/jcph.1995.1039.
Renault, A., Gavoille,
P., Malaplate, J., Pokor, C. & Tanguy, B. 2015. Correlation of
radiation-induced changes in microstructure/microchemistry, density and
thermo-electric power of Type 304L and 316 stainless steels irradiated in the
phénix reactor. Journal of Nuclear Materials 460: 72-81.
Richter, A., Gheewala
Ismail, Smith, R., Kenny, S.D., Valdez, J. & Sickafus, K. 2008. Changes in
the mechanical properties of irradiated MgO(100) crystals investigated by
nanoindentation and computer simulation. Journal of Nuclear Materials 382(2-3):
176-183.
Rofman, O.V., Maksimkin,
O.P., Tsay, K.V., Koyanbayev, Y.T. & Short, M.P. 2017. The natural aging of
austenitic stainless steels irradiated with fast neutrons the natural aging of
austenitic stainless steels irradiated with fast neutrons. Journal of
Nuclear Materials 499(November): 284-293.
Ruestes, C.J. 2017.
Atomistic studies of nanoindentation-A review of recent advances. Crystals 7(10):
293.
Shan, L.D.B., Yuan, L.,
Xu, Z.H. & Guo, B. 2009. Atomistic simulation of voids effect on
nanoindentation. Journal of Nanoscience and Nanotechnology 9(2):
1234-1236.
Stukowski, A. 2010.
Visualization and analysis of atomistic simulation data with OVITO-the open
visualization tool. Modelling and Simulation in Materials Science and
Engineering 18(1): 15012.
Tan, C.M. & Jeng,
Y.R. 2009. Computer simulations of nanoindentation on Cu (111) with a void. International
Journal of Solids and Structures 46(9): 1884-1889.
Tan, L., Katoh, Y.,
Tavassoli, A.F., Henry, J., Rieth, M., Sakasegawa, H., Tanigawa, H. &
Huang, Q. 2016. Recent status and improvement of reduced-activation
ferritic-martensitic steels for high-temperature service. Journal of Nuclear
Materials 479: 515-523.
Terentyev, D., Bonny,
G., Domain, C., Monnet, G. & Malerba, L. 2013. Mechanisms of radiation
strengthening in Fe-Cr alloys as revealed by atomistic studies. Journal of
Nuclear Materials 442(1-3): 470-485.
Tschopp, M.A., Gao, F.,
Yang, L. & Solanki, K.N. 2014. Binding energetics of substitutional and
interstitial helium and Di-helium defects with grain boundary structure in
α-Fe. Journal of Applied Physics 115(3): 033503.
Tschopp, M.A.,
Horstemeyer, M.F., Gao, F., Sun, X. & Khaleel, M. 2011. Energetic driving
force for preferential binding of self-interstitial atoms to Fe grain
boundaries over vacancies. Scripta Materialia 64(9): 908-911.
Uberuaga, B.P.,
Martínez, E., Perez, D. & Voter, A.F. 2018. Discovering mechanisms relevant
for radiation damage evolution. Computational Materials Science 147:
282-292.
Voyiadjis, G.Z. &
Mohammadreza Yaghoobi. 2015. Large scale atomistic simulation of size effects
during nanoindentation: Dislocation length and hardness. Materials Science
and Engineering A 634: 20-31.
Was, G.S. 2007. Fundamentals
of Radiation Materials Science: Metals and Alloys. Berlin: Springer-Verlag.
Wolfer, W.G. 2012.
Fundamental properties of defects in metals. In Comprehensive Nuclear
Materials. https://doi. org/10.1016/B978-0-08-056033-5.00001-X.
Yabuuchi, K., Kasada, R.
& Kimura, A. 2013. Effect of alloying elements on irradiation hardening
behavior and microstructure evolution in BCC Fe. Journal of Nuclear
Materials 442(1-3): 790-795.
Yvon, P. & Carré, F.
2009. Structural materials challenges for advanced reactor systems. Journal
of Nuclear Materials 385(2): 217-222.
Zhan, H.F., Gu, Y.T.
& Yarlagadda, P.K.D.V. 2011. Advanced numerical characterization of mono-
crystalline copper with defects. Advanced Science Letters 4(5):
1293-1301.
Zhang, X., Hattar, K.,
Chen, Y., Shao, L., Li, J., Sun, C., Yu, K., Nan, L., Mitra, T., Wang, H.,
Wang, J. & Michael, N. 2018. Radiation damage in nanostructured materials. Progress
in Materials Science 96: 217-321.
Zinkle, S.J. & Was,
G.S. 2013. Materials challenges in nuclear energy. Acta Materialia 61(3):
735-758.
*Corresponding
author; email: wangqingyu@hrbeu.edu.cn
|