Sains Malaysiana 49(11)(2020): 2609-2623
http://dx.doi.org/10.17576/jsm-2020-4911-01
Intraspecific Phenotypic Variation in Nearly
Threatened Mottled Nandus, Nandus nandus(Hamilton, 1822)
(Variasi Fenotip Intrakhusus Patung Belang Nandus
yang Hampir Terancam, Nandus nandus (Hamilton,
1822))
MD. SAROWER-E-MAHFUJ1,
MD. ABDUS SAMAD1, FEE FAYSAL AHMED2, MD. ABDUL ALIM1,
YOSNI BAKAR3 & SIMON KUMAR DAS3,4*
1Department of Fisheries
and Marine Biosciences, Jashore University of Science
and Technology, Jashore-7408, Bangladesh
2Department of
Mathematics, Jashore University of Science and
Technology, Jashore-7408, Bangladesh
3Department
of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Marine Ecosystem
Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 12 February
2018/Accepted: 22 May 2020
ABSTRACT
Understanding
intraspecific phenotypic plasticity is a prerequisite of stock identification,
evolutionary studies, sustainable utilization, and fishery conservation. In
this study, intraspecific phenotypic plasticity was assessed in terms of the
external features (i.e. meristic, morphometric, and truss-based morphometrics) of the wild Nandus populations from four freshwater sources in Southwestern Bangladesh. Fish
samples were collected from Arial Kha River, Madaripur (AKRM, n=26); Nabaganga River, Jhenaidah (NRJ, n=22); Bohnni Baor, Gopalganj (BBG,
n=26); and Dhakuria Beel, Jashore (DBJ, n=22). Meristic, morphometric, and truss
network data were subjected to one-way ANOVA followed by post hoc (Tukey-HSD)
test. The meristic counts of all the samples demonstrated significant
differences only in one of the six characters. By contrast, significant
differences were observed in 8 morphometric characters and 31 truss network
data from 16 morphometric characters and 35 truss network data, respectively.
Principal component (PCA) and canonical variate analyses (CVA) were also
performed on morphometric and truss-based network data. Meristic and
morphometric results from PCA and CVA showed that populations were completely
intermingled, forming a compact cluster within intrapopulation levels, while truss morphometric characters formed a separate cluster. Three dendrograms independently based on phenotypic relationships among the individuals of
the four populations also confirmed the absence of phenotypic differentiation
among the population due to clustering of different groups. The baseline information resulting from the
current study would be useful for genetic studies and further in situ conservation
of Nandus populations
in Bangladesh.
Keywords: Canonical variate analysis;
freshwater; morphometric; meristic; nandus;
principle component analysis; Truss morphometry
ABSTRAK
Memahami keplastikan
fenotip intrakhusus adalah satu pra-syarat untuk mengenal pasti
stok, kajian evolusi dan pemanfaatan lestari dan pemuliharaan dalam perikanan.
Dalam kajian ini kepelbagaian fenotip intrakhusus dinilai dari segi ciri luaran (iaitu meristik, morfometri
dan morfometri dasarkan truss) daripada populasi liar ikan nandus dari empat sumber air tawar di selatan-barat
Bangladesh. Sampel ikan dikumpulkan dari Arial Kha River, Madaripur (AKRM), (n
= 26); Sungai Nabaganga, Jhenaidah (NRJ), (n = 22); Bohnni Baor, Gopalganj
(BBJ), (n = 26); dan Dhakuria Beel, Jashore (DBJ), (n = 22). Data meristik,
morfometri dan rangkaian truss dianalisis menggunakan varians satu arah (ANOVA)
diikuti dengan ujian Post-hoc (Tukey-HSD). Perhitungan meristik untuk kesemua
sampel menunjukkan perbezaan yang signifikan hanya dalam satu ciri daripada enam
ciri manakala perbezaan yang signifikan diperhatikan dalam 8 ciri morfometrik
dan 31 rangkaian data truss masing-masing daripada 16 ciri
morfometrik dan 35 rangkaian data truss. Di samping itu, analisis komponen utama (PCA) dan analisis fungsi diskriminasi (CVA) dilakukan dengan menggunakan morfometrik dan data rangkaian berasaskan truss. Hasil daripada PCA dan CVA menunjukkan populasi terpisah sepenuhnya serta membentuk kelompok yang padat dalam tahap intra-populasi. Tiga dendrogram secara bebas berdasarkan hubungan fenotip antara individu daripada empat populasi dibina. Populasi NRJ, BBG dan DBJ membentuk populasi kumpulan masing-masing berdasarkan meristik, morfometrik dan truss morfometrik. Maklumat asas yang dihasilkan daripada kajian semasa adalah mudah untuk kajian genetik dan pemuliharaanpopulasi Nandus secara in situ di
Bangladesh.
Kata kunci: Air
tawar; analisis fungsi diskriminasi; meristik; morfometrik; morfometri Truss; nandus
REFERENCES
Ahmed, M.S. 2008. Assessment of fishing practices on
the exploitation of the Titas floodplain in Brahmanbaria, Bangladesh. Turkish Journal of Fisheries and Aquatic Sciences 8(2): 329-334.
Agarwal, V.P. & Sharma, K.U. 1966. Studies on the
physiology of digestion in Nandus nandus (Ham.). Proceedings
of the Indian Academy of Sciences 64: 157-168.
Akbarzadeh, A., Facxsarahmand, H., Shabani, A.A., Karami, M., Kaboli, M., Abbasi, K. & Rafiee, G.R. 2009. Morphological variation of the pikeperch Sander lucioperca (L.) in the southern Caspian Sea, using a truss system. Journal of Applied
Ichthyology 25(5): 576-582.
Allendorf, F.W. & Phelps, S.R. 1988. Loss of genetic variation in
a hatchery stock of cutthroat trout. Transactions of the American Fisheries
Society 109(5): 537-543.
Allendorf, F.W., Ryman, N. &
Utter, F. 1987. Genetics and fishery management: Past, present and future in
population genetics and fisheries management. In Population Genetics and
Fishery Management, edited by Ryman,
N. & Utter, F. Washington: University of Washington Press. pp. 1-20.
Başusta, A., Özer, E.I., Girgin, H., Serdar, O. & Başusta, N.
2014. Length-weight relationship and condition factor of Hippocampus hippocampus and Hippocampus guttulatus inhabiting Eastern Black Sea. Pakistan Journal of Zoology 46(2): 447-450.
Cadrin, S.X.
2000. Advances in morphometric identification of fishery stocks. Reviews
in Fish Biology and Fisheries 10(1):
91-112.
Cadrin, S.X.
& Friedland, K.D. 1999. The utility of image
processing techniques for morphometric analysis and stock identification. Fisheries
Research 43(1):
129-139.
Chakrabarty, P., Oldfield, R.G. & Ng, H.H. 2006. Nandus prolixus, a
new species of leaf fish from northeastern Borneo (Teleostei: Perciformes: Nandidae). Zootaxa 1328:
51-61.
Chowdhury, G.W. 2015. Nandus nandus. The IUCN Red List of Bangladesh.
Volume 5: Freshwater Fishes. Dhaka: IUCN, International Union for
Conservation of Nature, Bangladesh Country Office.
Crispo, E.
2008. Modifying effects of phenotypic plasticity on interactions among natural
selection, adaptation and gene flow. Journal of Evolutionary Biology 21(6):
1460-1469.
Das, M. & Zamal,
N. 2000. Domestication of an endangered fish species Nandus nandus (Ham.) pt. 1. Laboratory rearing
of young fish up to sexual maturity. Bangladesh
Journal of Fisheries Research 4(2): 135-140.
Eklöv, P.
& Svanbäck, R. 2005. Predation risk influences
adaptive morphological variation in fish populations. The American
Naturalist 167(3):
440-452.
Elliott, N.G., Haskard, K.
& Koslow, J.A. 1995. Morphometric analysis of
orange roughy (Hoplostethus atlanticus) off the continental slope of
southern Australia. Journal of Fisheries
Biology 46(1): 202-220.
Gain,
D., Mahfuj, M.S., Huq,
K.A., Islam, S.S., Minar, M.H., Goutham-Bharathi,
M.P. & Das, S.K. 2017. Landmark-based morphometric and meristic variations
of endangered mrigal carp, Cirrhinus cirrhosus (Bloch 1795), from wild and
hatchery stocks. Sains Malaysiana 46(5): 695-702.
Goswami, S. & Dasgupta, M. 2007.
Analysis of the morphometric and meristic characters of the fish Nandus nandus (Hamilton) from the new alluvial zone of West Bengal. Records of the
Zoological Survey of India 107:
81-90.
Hamilton, F.
1822. An Account of the Fishes Found in the River Ganges and Its Branches. Uttarakhand: Bishen Singh Mahendra Pal Singh.
Hood, C.S. & Heins,
D.C. 2000. Ontogeny and allometry of body shape in
the blacktail shiner, Cyprinella venusta. Copeia 2000(1):
270-275.
Hossain,
M.A., Nahiduzzaman, M., Saha,
D., Khanam, M.U.H. & Alam,
M.S. 2010. Landmark-based morphometric and meristic variations of the
endangered carp, Kalibaus Labeo calbasu, from stocks of two isolated
rivers, the Jamuna and Halda,
and a hatchery. Zoological Studies 49(4): 556-563.
Hossain, M.S.
& Sarker, S. 2013. New species of leaf fish Nandus meni (Perciformes: Nandidae) from Noakhali, Bangladesh. Zoology and Ecology 23(3): 191-197.
Kahilainen, K. & Østbye, K. 2006.
Morphological differentiation and resource polymorphism in three sympatric whitefish Coregonus lavaretus (L.) forms in a subarctic lake. Journal of Fish Biology 68(1): 63-79.
Kaiser, H.F. 1974. An index of factorial simplicity. Psychometrika 39: 31-36.
Kalhoro, M.A.,
Liu, Q., Valinassab, T., Waryani,
B., Abbasi, A.R. & Memon,
K.H. 2015. Population dynamics of greater lizardfish, Saurida tumbil from Pakistani waters. Pakistan Journal of Zoology 47(4):
921-935.
Kocovsky, P.M., Adams, J.V. & Bronte, C.R., 2009. The effect of
sample size on the stability of principal component analysis of truss-based
fish morphometrics. Transaction of American Fisheries Society 138: 487-496.
Langerhans, R.B. 2008. Predictability
of phenotypic differentiation across flow regimes in fishes. Integrative
and Comparative Biology 48(6):
750-768.
Lindsey,
C.C. 1988. 3 factors controlling meristic variation. Fish Physiology.
Vol. 11. pp. 197-274. Massachusetts: Academic Press.
Mahfuj, M.S., Khatun, A., Boidya, P. & Samad, M. 2019a.
Meristic and morphometric variations of barred spiny eel Macrognathus pancalus populations from Bangladeshi freshwaters: An
insight into landmark-based truss network system. Croatian Journal of
Fisheries: Ribarstvo 77(1): 7-18.
Mahfuj, M.S., Rahman, M.M., Islam, M., Samad,
M.A., Paul, A.K. & Adhikary, R.K. 2019b.
Landmark-based morphometric and meristic variations of freshwater garfish, Xenentodon cancila from
four natural stocks of South-Western Bangladesh. Journal of Advanced
Veterinary and Animal Research 6(1): 117-124.
Mahfuj, S.E., Rahman, S.U. & Samad,
A. 2019c. Landmark-based truss morphometrics delineate the stock structure of Lepidocephalichthys guntea. Journal of Fisheries and Aquatic Science 14(1):
25-32.
Mahfuj, S., Ashraful, M.A., Parvez, I., Minar, M.H. & Samad, A. 2017. Morphological variations of Labeo bata populations
(Teleostei: Cyprinidae) in
six rivers of Bangladesh: A landmark-morphometric contribution. Iranian Journal of
Ichthyology 4(3): 270-280.
McGarigal, K., Cushman, S. & Stafford, S. 2000. Multivariate
Statistics for Wildlife and Ecology Research. New York: Springer Verlag.
Mir, J.I.,
Sarkar, U.K., Dwivedi, A.K., Gusain,
O.P. & Jena, J.K. 2013. Stock structure analysis of Labeo rohita (Hamilton, 1822) across the Ganga
basin (India) using a truss network system. Journal of Applied Ichthyology 29(5): 1097-1103.
Mustafa, G.,
Ahmed, A.T.A. & Islam, K.R. 1980. Food, feeding habits and fecundity of a
freshwater perch, meni fish. Bangladesh Journal of
Agriculture 5(4): 205-210.
Nakamura, T.
2003. Meristic and morphometric variations in fluvial Japanese charr between river systems and among tributaries of a
river system. Environmental Biology of Fishes 66(2): 133-141.
Ng, H.H., Vidthayanon, C. & Ng, P. 1996. Nandus oxyrhynchus, a new species of leaf fish
(Teleostei: Nandidae) from
the Mekong Basin. The Raffles Bulletin of
Zoology 44(1): 11-19.
Okomoda, T.V., Koh, I.C.C., Hassan, A., Amornsakun, T. & Shahreza,
S.M. 2018a. Morphological characterization of the progenies of pure and
reciprocal crosses of Pangasianodon hypophthalmus (Sauvage,
1878) and Clarias gariepinus (Burchell,
1822). Scientific Reports 8(1): 1-13.
Okomoda, V.T., Koh, I.C.C.,
Hassan, A., Amornsakun, T. & Shahreza,
M.S. 2018b. Performance and
characteristics of the progenies from the crosses of Pangasianodon hypophthalmus(Sauvage,
1878) and Clarias gariepinus (Burchell, 1822). Aquaculture 489(3): 96-104.
Oufiero, C.E. & Whitlow, K.R. 2016. The evolution of phenotypic
plasticity in fish swimming. Current Zoology 62(5): 475-488.
Parsons,
K.J., McWhinnie, K., Pilakouta,
N. & Walker, L. 2020. Does phenotypic plasticity initiate developmental
bias? Evolution & Development 22(1-2): 56-70.
Rahman, A.K.A. 2005. Freshwater Fishes of
Bangladesh. 2nded.
pp. 394. Dhaka: University of Dhaka.
Rohlf, F.J.
2006. TPS Software Series. New York: Department of Ecology and
Evolution, State University of New York, Stony Brook.
Ross, N.,
Islam, M.M. & Thilsted, S.H. 2003. Small
indigenous fish species in Bangladesh: Contribution to vitamin A, calcium and iron intakes. The Journal of Nutrition 133(11): 4021S-4026S.
Saborido-Rey, F. & Nedreaas, K.H.
2000. Geographic variation of Sebastes mentella in the Northeast Arctic derived from a
morphometric approach. ICES Journal of Marine Science 57(4): 965-975.
Simon, K.D.,
Bakar, Y., Temple, S.E. & Mazlan, A.G. 2010.
Morphometric and meristic variation in two congeneric archer fishes Toxotes chatareus (Hamilton 1822) and Toxotes jaculatrix (Pallas 1767) inhabiting Malaysian coastal waters. Journal of Zhejiang University Science B 11(11): 871-879.
Silva, S.E., Silva, I.C., Madeira,
C., Sallema, R., Paulo, O.S. & Paula, J. 2013.
Genetic and morphological variation in two littorinid gastropods: Evidence for
recent population expansions along the East African coast. Biological
Journal of the Linnean Society 108(3): 494-508.
Solomon,
S.G., Okomoda, V.T. & Ogbenyikwu,
A.I. 2015. Intraspecific morphological variation between cultured and wild Clarias gariepinus (Burchell) (Clariidae, Siluriformes). Archives of Polish Fisheries 23(1):
53-61.
Stearns,
S.C. 1983. A natural experiment in life-history evolution: field data on the
introduction of mosquito fish (Gambusia affinis) to Hawaii. Evolution 37(3): 601-617.
Strauss, R.E. & Bookstein, F.L. 1982. The truss: Body form reconstructions in morphometrics. Systematic
Biology 31(2): 113-135.
Svanbäck, R.
& Eklöv, P. 2002. Effects of habitat and food
resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131(1): 61-70.
Trabelsi, M. 2002. Le complexe Atherina boyeri. Caractérisation biométrique, biochimique et génétique. Mise en de deux nouvelles espèces d’athérines dans le méditerranéen. Université de Tunis 291.
Turan, C., Yalçin, S., Turan, F., Okur, E. & Akyurt, I. 2005.
Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey. Folia Zoologica 54(1/2): 165-172.
Turan, C., Ergüden, D., Gürek, M. & Turan, F. 2004. Genetic and morphologic structure of Liza abu (Heckel, 1843) populations from the rivers Orontes,
Euphrates and Tigris. Turkish Journal of Veterinary and Animal Sciences 28(4):
729-734.
Walsh, M.G.,
Bain, M.B., Squiers, T., Waldman, J.R. & Wirgin, I. 2001. Morphological and genetic variation among shortnose sturgeon Acipenser brevirostrum from adjacent and distant rivers. Estuaries 24(1): 41-48.
Webster, M. & Sheets, H.D. 2010.
A practical introduction to landmark-based geometric morphometrics. Quantitative
Methods in Paleobiology 16: 168-188.
West-Eberhard,
M.J. 1989. Phenotypic plasticity and the origins of diversity. Annual Review
of Ecology and Systematics 20(1): 249-278.
Wimberger, P.H. 1992. Plasticity of fish body shape. The effects of
diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biological Journal of the Linnean Society 45(3): 197-218.
*Corresponding
author; email: simon@ukm.edu.my