Sains Malaysiana 49(11)(2020): 2689-2698
http://dx.doi.org/10.17576/jsm-2020-4911-08
Synthesis of Hydroxylated
Polyisoprene-Graft-Polylactide Copolymer
(Sintesis Kopolimer Poliisoprena Terhidroksil-Cangkuk-Polilaktida)
BENJAMIN
NEOH DI-SHEN1, SITI FAIRUS MOHD YUSOFF1,2 TAKENO AKIYOSHI3, TAKAHASHI SHINYA3 & FARAH
HANNAN ANUAR1,2*
1Department of Chemical Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Polymer Research Center (PORCE), Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Department of Chemistry and Biomolecular Science,
Faculty of Engineering,
Gifu University,
Japan Tokai National Higher Education and Research System,
1-1 Yanagido, Gifu-shi, Gifu, 501-1193
Japan
Received:
3 December 2019/Accepted: 20 May 2020
ABSTRACT
Polyisoprene (PI) has been widely used in
many industries for decades. Many researches have reported that most
significant weaknesses of polyisoprene are caused by unsaturated double bond
C=C. The aim of this research was to synthesis and characterize a new copolymer
utilizing the unsaturated double bond C=C of polyisoprene. PI is first modified
to form hydroxylated polyisoprene (PIOH). The absence of alkene proton peak in
NMR spectrum of PIOH is a strong evidence that the unsaturation of PI has been
reduced. After that, PIOH is subjected as an initiator for the ring-opening
polymerization of D,L-lactide in bulk condition to form hydroxylated
polyisoprene-graft-polylactide copolymer (PI-g-PLA). The NMR spectrum of the
new copolymer structure showed an unique peak at 4.09 ppm corresponding to
methine proton of polyisoprene backbone adjacent to the PLA chains, indicating
the grafting of D,L-lactide is successful to form PIOH-g-PLA. The average
molecular weight, Mw of PIOH-g-PLA was significantly increased
compared to PIOH, from 38260 to 56870 according to GPC. The surface of
PIOH-g-PLA displayed significantly higher wettability and hidrophilicity than polyisoprene with water contact angle of below
30°. This owes to the terminal hydroxyl groups of PLA chains that lead to the
formation of hydrogen bonds. Thermal stability studies by TGA and DTG of
PIOH-g-PLA indicated two thermal degradations at Tmax 260 and 392 ℃ corresponding to PLA side chains and PIOH backbone,
respectively, with PIOH exhibiting highest thermal stability compared to PI and
the graft copolymer.
Keywords: Graft copolymer; hydroxylated
polyisoprene; polylactide; ring opening polymerization
ABSTRAK
Poliisoprena (PI) mempunyai kegunaan yang meluas dalam pelbagai industri. Kebanyakan laporan kajian menunjukkan bahawa kelemahan sifat poliisoprena adalah disebabkan ketidaktepuan ikatan ganda dua C=C pada rantai poliisoprena. Kajian ini bertujuan untuk mensintesis dan mencirikan kopolimer baharu melalui tindak balas pada ikatan ganda dua tidak tepu C=C poliisoprena. PI pada mulanya diubah suai untuk membentuk poliisoprena terhidroksil (PIOH). Kehilangan puncak hidrogen alkena dalam spektrum NMR PIOH merupakan bukti kukuh bahawa ketidaktepuan PI telah berkurangan. Kemudian, PIOH digunakan sebagai pemula bagi tindak balas pempolimeran buka gelang dalam keadaan pukal untuk menghasilkan kopolimer poliisoprena terhidroksil-cangkuk-polilaktida (PIOH-g-PLA). Spektrum NMR struktur kopolimer baharu tersebut menunjukkan puncak unik pada 4.09 ppm yang ditetapkan kepada hidrogen metina rantai tulang belakang poliisoprena bersebelahan dengan rantai PLA, membuktikan bahawa cangkukan D,L-laktida berjaya membentuk PIOH-g-PLA. Berat purata berat molekul, Mw PIOH-g-PLA telah meningkat berbanding PIOH, daripada 38260 kepada 56870 seperti yang ditunjukkan melalui GPC. Sifat permukaan PIOH-g-PLA menunjukkan kebolehbasahan yang tinggi dan lebih hidrofilik dengan sudut sentuhan air kurang daripada 30°. Ini adalah kerana kumpulan berfungsi hidroksil hujung rantai PLA telah menyumbang kepada ikatan hidrogen. Pencirian kestabilan terma PIOH-g-PLA menggunakan TGA dan DTG menunjukkan dua penguraian terma pada Tmax 260 dan 392℃ bagi rantai sisi PLA dan rantai tulang belakang PIOH masing-masing, dengan PIOH mempunyai kestabilan terma yang lebih tinggi berbanding PI dan kopolimer cangkuk.
Kata kunci: Kopolimer cangkuk; pempolimeran buka gelang; poliisoprena terhidroksil; polilaktida
REFERENCES
Ahmad, I., Ismail, H.
& Rashid, A. 2015. ENR-50 compatibilized natural rubber/recycled
acrylonitrile-butadiene rubber blends. Sains Malaysiana 44(6): 835-842.
Anancharoenwong,
E. 2011. Synthesis and characterization of cis-1,4-polyisoprene-based
polyurethane coatings; study of their adhesive properties on metal surface.
University of Maine, Ph.D. Thesis (Unpublished).
Anon. 2014. Preparation of Synthetic Polyisoprene Latex
and Its Use in Coagulant Dipping. Kraton Performances Polymer Inc.
Azhar, N.H.A., Rasid, H.M. & Yusoff, S.F.M.
2017. Epoxidation and hydroxylation of liquid natural rubber. Sains Malaysiana 46(3): 485-491.
Azhar, N.H.A., Rasid, H.M. & Yusoff, S.F.M.
2016. Chemical modifications of liquid natural rubber. AIP Conference Proceedings 1784: 1-7.
Bristow, G.M.,
Campbell, J.M. & Farlie, E.D. 1969. comparative
properties of natural rubber and synthetic cis-polyisoprene. Journal Rubber Research Institute Malaya 22(2): 225-241.
Brosse, J.C., Campistron, I., Derouet, D., Hamdaoui, A.E., Houdayer, S., Reyx, D. & Retoit-Gillier,
S. 2000. Chemical modifications of polydiene elastomers: A survey and some recent results. Journal of Applied Polymer Science 78(8): 1461-1477.
Caldas, B.S., Danielle,
L.B., Nakamura, C.V., Halila, S., Borsali,
R. & Muniz, E.C. 2020. Drug carrier systems made from self-assembled glyco-nanoparticles of maltoheptaose-b-polyisoprene enhanced the distribution and activity of
curcumin against cancer cells. Journal of
Molecular Liquids 309(2020): 113022-113031.
Feng, L., Feng, S., Bian, X., Gao, L. & Chen, X. 2018. Pyrolysis mechanism
of poly(lactic acid) for giving lactide under the catalysis of tin. Polymer Degradation and Stability 157:
212-223.
Gemmer, R.V. & Golub,
M.A. 1978. 13C NMR spectroscopic study of epoxidized 1,4-polyisoprene and
1,4-polybutadiene. Journal of Polymer
Science: Polymer Chemistry Edition 16(11): 2985-2990.
Hanhi, K., Poikelispaa, H. & Tirila,
H.M. 2007. Elastometric materials. Plastic and Elastomer Technology: 1-84.
Hassan, M.I., Chong,
L.H. & Sultana, N. 2016. Wettability and water uptake properties of PLA and
PCL/gelatin-based electrospun scaffolds. ARPN Journal of Engineering
and Applied Sciences 11(23): 13604-13607.
Hisham, S.F., Ahmad,
I., Daik, R. & Ramli, A. 2011. Blends of LNR with
unsaturated polyester resin from recycled PET: Comparison of mechanical
properties and morphological analysis with the optimum blend by commercial resin. Sains Malaysiana 40(7): 729-735.
Idris, M.S.F., Yusoff, S.F.M. & Mokhtar, W.N.A.W. 2019. New approach
on the modification of liquid natural rubber production using microwave
technique. Sains Malaysiana 48(7): 1433-1438.
Kasalkova, N.S., Slepicka, P., Kolska, Z. & Svorcik, V. 2015. Wettability
and Other Surface Properties of Modified Polymers. https://www.intechopen.com/books/wetting-and-wettability/wettability-and-other-surface-properties-of-modified-polymers.
Kind, D.J. & Hull,
T.R. 2012. A review of candidate fire retardants for polyisoprene. Polymer Degradation and Stability 97(3):
201-213.
Kopinke, F.D., Remmler, M. & Mackenzie, K. 1996. thermal decomposition
of biodegradable polyesters-i: poly(β-hydroxybutyric acid). Polymer
Degradation and Stability 52(1): 25-38.
Liu, C., Bonaccurso, E., Sokuler, M., Auernhammer, G.K. & Butt, H.G. 2010. Dynamic Wetting of
Polyisoprene Melts: Influence of the End Group. Langmuir 26(4): 2544-2549.
Malaysia Rubber Board
(MRB). 2018. Natural Rubber Statistics 2018. Malaysia.
Nampoothiri, K., Nair, N.R. &
John, R.P. 2010. An overview of the recent developments in polylactide (PLA)
research. Bioresource Technology 101(22): 8493-8501.
Paoprasert, P. & Chanroj, T. 2016. Chlorohydrination of natural rubber latex using sodium hypochlorite for fuel-resistant materials. Rubber Chemistry and Technology 89(2):
251-261.
Pluta, M. 2004. Morphology
and properties of polylactide modified by thermal treatment, filling with
layered silicates and plasticization. Polymer 45(24): 8239-8251.
Pretula, J., Slomkowski, P. & Penczek, P.
2016. Polylactides-Methods of synthesis and
characterization. Advanced Drug Delivery
Reviews 107: 3-16.
Rasal, R.M., Janorkar, A.V. & Hirt, D.E. 2010. Poly(lactic acid)
modifications. Progress in Polymer
Science 35(3): 338-356.
Sato, H. & Tanaka,
Y. 1979. 1H-NMR study of polyisoprenes. Journal
of Polymer Science: Polymer Chemistry Edition 17(11): 3551-3558.
Schmidt, S.C. & Hillmyer, M.A. 2001. Polylactide stereocomplex crystallites as nucleating agents for
isotactic polylactide. Journal of Polymer
Science, Part B: Polymer Physics 39(3): 300-313.
Swartling, D.J., Coonce, J.G. & Cashman, D.J. 2018. Using balloons to
model pi-conjugated systems and to teach frontier molecular orbital theory. World Journal of Chemical Education 6(2): 102-106.
Tanaka, Y. & Sato, H. 1976. Sequence
distribution of cis-1, 4-and trans-1, 4-units in polyisoprenes. Rubber
Chemistry and Technology 49(5):
1269-1275.
Thakur, K.A.M., Kean,
R.T., Hall, E.S., Doscotch, M.A. & Munson, E.J.
1997a. A quantitative method for
determination of lactide composition in poly(lactide) using H NMR. Analytical Chemistry 69(21): 4303-4309.
Thakur, K.A., Kean,
R.T., Hall, E.S., Kolstad, J.J., Lindgren, T.A., Doscotch,
M.A., Siepmann, J.I. & Munson, E.J. 1997b.
High-resolution 13C and 1H solution NMR study of
poly(lactide). Macromolecules 30(8):
2422-2428.
Tretinnikov, O.N. & Ikada, Y. 1997. Hydrogen bonding and wettability of
surface-grafted organophosphate polymer. Macromolecules 30(4): 1086-1090.
Wongthong, P., Nakason, C., Pan, Q.M., Rempel, G.L. & Kiatkamjornwong, S. 2013. Modification of deproteinized
natural rubber via grafting polymerization with maleic anhydride. European Polymer Journal 49(12):
4035-4046.
Xia, L., Gao, H., Bi,
W., Fu, W., Qiu, G. & Xin, Z. 2019. Shape memory behavior of carbon black-reinforced trans-1, 4-polyisoprene
and low-density polyethylene composites. Polymers 11(5): 807-815.
Yakubchik, A.I., Tichomirov, B.I. & Sulimov, V.S. 1962. Hydrogenation of
natural and synthetic cis-1,4- polyisoprene. Rubber Chemistry and Technology 35(4): 1063-1065.
Zahari, N.W., Mohd, A.F., Samsuri, A. & Kamarun, D. 2018a. Physical and mechanical properties of
compounded hydroxylated natural rubber. AIP
Conference Proceedings 1985: 040017.
Zahari, N.W., Mohd, A.F., Samsuri, A. & Kamarun, D. 2018b. Thermal properties of hydroxylated
natural rubber from in-situ hydroxylation process. AIP Conference
Proceedings 1985: 040016.
Zell, M.T., Padden,
B.E., Paterick, A.J., Thakur, K.A.M., Kean, R.T., Hillmyer, M.A. & Munson, E.J. 2002. Unambiguous
determination of the 13C and 1H NMR stereosequence assignments of polylactide using high-resolution
solution NMR spectroscopy. Macromolecules 35(20): 7700-7707.
Zhong, Z., Pieter, J.D.
& Jan, F. 2002. [(Salen)Al]-Mediated, controlled
and stereoselective ring-opening polymerization of
lactide in solution and without solvent: Synthesis of highly isotactic polylactide stereocopolymers from
racemic D,L-lactide. Angewandte Chemie International Edition 41(23):
4510-4513.
*Corresponding
author; email: farahhannan@ukm.edu.my
|