Sains Malaysiana 49(11)(2020): 2721-2734

http://dx.doi.org/10.17576/jsm-2020-4911-11

 

Comparative Adsorption Mechanism of Rice Straw Activated Carbon Activated with NaOH and KOH

(Perbandingan Mekanisma Penjerapan Karbon Teraktif Jerami Padi yang Diaktif dengan NaOH dan KOH)

 

MOHAMAD JANI SAAD1,4, MOHD SHAIFUL SAJAB2, WAN NAZRI WAN BUSU4, SUFIAN MISRAN3, SARANI ZAKARIA1, SIEW XIAN CHIN5 & CHIN HUA CHIA1*

 

1Bioresources and Biorefinery Laboratory, Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Forest Research Institute of Malaysia, 52100 Kepong, Selangor Darul Ehsan, Malaysia


4Malaysian Agriculture Research and Development Institute, 43400 Serdang, Selangor
Darul Ehsan, Malaysia

 

5ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 16 December 2019/Accepted: 14 May 2020

 

ABSTRACT

Activated carbon (AC) was produced from rice straw via a two-step method. Potassium hydroxide (KOH) and sodium hydroxide (NaOH) were used as activating agent. The activated carbon (AC) samples were used as adsorbent to remove methylene blue (MB) from aqueous solution. Characterizations using a scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET), and Fourier transform infrared (FTIR) spectroscopy were performed on the samples before the MB adsorption experiments. The adsorption isotherms and kinetics analyses were carried out under different conditions of pH, temperature, and MB concentration to study the adsorption efficiency of the samples against the MB solution. The adsorption kinetics of both activated carbon samples followed the pseudo-second-order model. The adsorption capacity of the KOH rice straw activated carbon towards MB achieved a maximum adsorption 588 mg/g as compared to 232 mg/g of the NaOH rice straw activated carbon. The intraparticle diffusion model indicated that the adsorption process of the activated carbon samples toward MB included the external mass transfer and diffusion of MB molecules into the adsorbents. Adsorption isotherm results for MB on the activated carbon samples fit the Langmuir isotherm, suggesting monolayer adsorption during the adsorption process.

 

Keywords: Activated carbon; adsorption; adsorption isotherm; methylene blue; rice straw

 

ABSTRAK

Karbon teraktif dihasilkan daripada jerami padi melalui kaedah 2 peringkat. Potasium hidroksida (KOH) dan natrium hidroksida (NaOH) telah digunakan sebagai agen aktivasi. Sampel karbon teraktif (AC) telah digunakan sebagai bahan penjerap untuk menyingkirkan metilena biru (MB) daripada larutan akuas. Pencirian terhadap sampel karbon teraktif menggunakan mikroskopi penskanan elektron (SEM), luas permukaan Brunauer-Emmett-Teller (BET) danspektroskopi transformasi Fourier inframerah (FTIR) telah dijalankan sebelum uji kaji penjerapan MB. Analisis kinetik dan isoterma penjerapan dijalankan pada pelbagai keadaan pH, suhu dan kepekatan MB bagi mengkaji kecekapan penjerapan sampel terhadap larutan MB. Penjerapan kinetik untuk kedua-dua sampel karbon teraktif menuruti model tertib pseudo kedua. Kapasiti penjerapan karbon teraktif jerami padi KOH terhadap MB telah mencapai penjerapan maksimum sebanyak 588 mg/g berbanding karbon teraktif jerami padi NaOH iaitu 232 mg/g. Model peresapan intrapartikel bagi proses penjerapan sampel karbon teraktif terhadap MB merangkumi pemindahan berat luaran dan resapan molekul MB terhadap karbon teraktif. Keputusan isoterma penjerapan mengikuti isoterma Langmuir, ia menunjukkan penjerapan lapisan mono berlaku semasa proses penjerapan.

 

Kata kunci: Isoterma penjerapan; jerami padi; karbon teraktif; metilena biru; penjerapan

 

REFERENCES

Abechi, S.E., Gimba, C.E., Uzairu, A., Kagbu, J.A. & Ocholi, O.J. 2013. Equilibrium adsorption studies of methylene blue onto palm kernel shell-based activated carbon. International Refereed Journal of Engineering and Science (IRJES) 2(5): 38-45.

Annadurai, G., Juang, R.S. & Lee, D.J. 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials 92(3): 263-274.

Aznie, R.C. & Mohd Zainol, R. 2014. Farmers knowledge on potential uses of rice straw: An assessment in Mada and Sekinchan, Malaysia. Geografia - Malaysian Journal of Society and Space 10(5): 30-43.

Banat, I., Singh-Nee, N.P., Singh, D. & Marchant, R. 1996. Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology 58(3): 217-227.

Bansal, R.C. & Goyal, M. 2005. Activated Carbon Adsorption. Boca Raton: Taylor & Francis.

Batzias, F.A. & Sidiras, D.K. 2007. Simulation of dye adsorption by beech sawdust as affected by pH. Journal of Hazardous Materials 141(3): 668-679.

Bhattacharya, K.G. & Sharma, A. 2005. Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes and Pigments 65(1): 51-59.

Boyd, G.E., Adamson, A.W. & Myers, L.S. 1947. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. kinetics. Journal of the American Chemical Society 69(11): 2836-2848.

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G. & Almeida, V.C. 2011. NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal 174(1): 117-125.

Chandrasekhar, S. & Pramada, P.N. 2006. Rice husk ash as an adsorbent for methylene blue-effect of ashing temperature. Adsorption 12(1): 27-43.

Chia, C.H., Razali, N.F., Sajab, M.S., Zakaria, S., Huang, N.M. & Lim, H.N. 2013. Methylene blue adsorption on graphene oxide. Sains Malaysiana 42(6): 819-826.

Chiou, C.T. 2002. Partition and Adsorption of Organic Contaminants in Environmental Systems. New York: Wiley/Interscience.

Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L. & Changhou, L. 2005. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43(11): 2295-2301.

Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology 97: 1061-1085.

Daifullah, A.A.M., Yakout, S.M. & Elreefy, S.A. 2007. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of Hazardous Materials 147(1-2): 633-643.

Danish, M., Ahmad, T., Nadhari, W.N.A.W., Ahmad, M., Khanday, W.A., Ziyang, L. & Pin, Z. 2018. Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment. Applied Water Science 8(1): 1-11.

Danish, M., Hashim, R., Ibrahim, M.N.M. & Sulaiman, O. 2014. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass and Bioenergy 61: 167-178.

El-Hendawy, A.N.A. 2003. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41(4): 713-722.

El-Kamash, A.M., Zaki, A.A. & El Geleel, M.A. 2005. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. Journal of Hazardous Materials 127(1-3): 211-220.

El-Maghraby, A. & Deeb, H.A.E. 2018. Removal of a basic dye from aqueous solution by adsorption using rice hulls. Global NEST Journal Global NEST: The International Journal 13(1): 90-98.

Elimelech, M. 2006. The global challenge for adequate and safe water. Journal of Water Supply: Research and Technology - Aqua 55(1): 3-10.

Foo, K.Y. & Hameed, B.H. 2011. Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination 275(1-3): 302-305.

Gao, P., Liu, Z., Xue, G., Han, B. & Zhou, M. 2011. Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresource Technology 102(3): 3645-3648.

Ghosh, D. & Bhattacharyya, K.G. 2002. Adsorption of methylene blue on kaolinite. Applied Clay Science 20(6): 295-300.

Guo, J.Z., Li, B., Liu, L. & Lv, K. 2014. Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere 111: 225-231.

Guo, Y., Yu, K., Wang, Z. & Xu, H. 2003. Effects of activation conditions on preparation of porous carbon from rice husk. Carbon 41(8): 1645-1648.

Hamdaoui, O. 2006. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials 135(1-3): 264-273.

Hameed, B.H. & Hakimi, H. 2008. Utilization of durian (Durio zibethinus Murray) peel as low cost sorbent for the removal of acid dye from aqueous solutions. Biochemical Engineering Journal 39(2): 338-343.

Hameed, B.H., Ahmad, A.L. & Latiff, K.N.A. 2007a. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments 75(1): 143-149.

Hameed, B.H., Din, A.T.M. & Ahmad, A.L. 2007b. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials 141(3): 819-825.

Hamza, U.D., Nasri, N.S., Amin, N.A.S., Mohammed, J. & Zain, H.M. 2016. Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times. Desalination and Water Treatment 57(17): 7999-8006.

Hirunpraditkoon, S., Tunthong, N., Ruangchai, A. & Nuithitikul, K. 2011. Adsorption capacities of activated carbons prepared from bamboo by KOH activation. World Academy of Science, Engineering and Technology 78: 711-715.

Ho, Y.S. & Mckay, G. 2003. Sorption of dyes and copper ions onto biosorbents. Process Biochemistry 38(7): 1047-1061.

Ho, Y.S. & Mckay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465.

Iqbaldin, M.M., Mohd Iqbaldin, M., Khudzir, I., Mohd Azlan, M., Zaidi, A., Surani, B. & Zubri, Z. 2013. Properties of coconut shell activated carbon. Journal of Tropical Forest Science 25(4): 497-503.

Kannan, N. & Sundaram, M.M. 2001. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes and Pigments 51(1): 25-40.

Kumar, D. & Gaur, J.P. 2011. Chemical reaction- and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresource Technology 102(2): 633-640.

Lagergren, S. 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24(4): 1-39.

Lillo-Ródenas, M.A., Lozano-Castelló, D., Cazorla-Amorós, D. & Linares-Solano, A. 2001. Preparation of activated carbons from Spanish anthracite - II. Activation by NaOH. Carbon 39(5): 751-759.

Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D. & Song, X.W. 2013. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource Technology 136: 437-443.

McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I.M., Marchant, R. & Smyth, W.F. 2001. Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology 56(1-2): 81-87.

Mohan, D., Singh, K.P., Singh, G. & Kumar, K. 2002. Removal of dyes from wastewater using flyash, a low-cost adsorbent. Industrial & Engineering Chemistry Research 41(15): 3688-3695.

Muniandy, L., Adam, F., Mohamed, A.R. & Ng, E.P. 2014. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials 197: 316-323.

Oh, G.H. & Park, C.R. 2002. Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel 81(3): 327-336.

Oh, G.H., Yun, C.H. & Park, C.R. 2003. Role of KOH in the one-stage KOH activation of cellulosic biomass. Carbon 4(4): 180-184.

Okman, I., Karagöz, S., Tay, T. & Erdem, M. 2014. Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide. Applied Surface Science 293: 138-142.

Patil, B.S. & Kulkarni, K.S. 2012. Development of high surface area activated carbon from waste material. International Journal of Advanced Engineering Research and Studies I(II): 2249-8974.

Pearce, C.I., Lloyd, J.R. & Guthrie, J.T. 2003. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments 58: 179-196.

Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. 2010. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials 177: 70-80.

Raoul, T.T.D., Gabche, A.S., Mbadcam, K.J., Ndifor-angwafor, N.G. & Nsami, N.J. 2014. Kinetics and equilibrium studies of adsorption of phenol in aqueous solution onto activated carbon prepared from rice and coffee husks. International Journal of Engineering and Technical Research 2(10): 166-173.

Rubín, E., Rodríguez, P., Herrero, R. & Sastre De Vicente, M.E. 2010. Adsorption of methylene blue on chemically modified algal biomass: Equilibrium, dynamic, and surface data. Journal of Chemical and Engineering Data 55(12): 5707-5714.

Rugayah, A.F., Astimar, A.A. & Norzita, N. 2014. Preparation and characterisation of activated carbon from palm kernel shell by physical activation with steam. Journal of Oil Palm Research 26(3): 251-264.

Sajab, M.S., Chia, C.H., Zakaria, S. & Khiew, P.S. 2013. Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions. Bioresource Technology 128: 571-577.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology 102(15): 7237-7243.

San Miguel, G., Fowler, G.D. & Sollars, C.J. 2003. A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon 41(5): 1009-1016.

Senthilkumaar, S., Kalaamani, P. & Subburaam, C.V. 2006. Liquid phase adsorption of crystal violet onto activated carbon derived from male flowers of coconut tree. Journal of Hazardous Materials 136: 800-808. 

Sharaf, G. & Hassan, H. 2014. Removal of copper ions from aqueous solution using silica derived from rice straw: Comparison with activated charcoal. International Journal of Environmental Science and Technology 11(6): 1581-1590.

Sharma, S. & Bhattacharya, A. 2017. Drinking water contamination and treatment techniques. Applied Water Science 7(3): 1043-1067.

Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z. & Huang, Y. 2013. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy 48: 250-256.

Soltani, N., Bahrami, A., Pech-Canul, M.I. & González, L.A. 2015. Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal 264: 899-935.

Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B. & Koren, Z.C. 2013. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial Crops and Products 47: 153-159.

Sulyman, M., Namiesnik, J. & Gierak, A. 2017. Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: A review. Polish Journal Environmental Studies 26(2): 479-510.

Sun, Q. & Yang, L. 2003. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research 37(7): 1535-1544.

Tan, I.A.W., Ahmad, A.L. & Hameed, B.H. 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials 154(1-3): 337-346.

Viswanathan, B., Neel, P. & Varadarajan, T. 2009. Methods of Activation and Specific Applications of Carbon Materials. Chennai, India: National Centre for Catalysis Research IIT Madras.

Weber, W. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division 89(2): 31-60.

Wu, M., Guo, Q. & Fu, G. 2013. Preparation and characteristics of medicinal activated carbon powders by CO2 activation of peanut shells. Powder Technology 247: 188-196.

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H. & Chen, Y. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy 47: 268-276.

Yu, Q., Li, M., Ning, P., Yi, H. & Tang, X. 2014. Preparation and phosphine adsorption of activated carbon prepared from walnut shells by KOH chemical activation. Separation Science and Technology (Philadelphia) 49(15): 2366-2375.

Zhang, F., Ma, H., Chen, J., Li, G.D., Zhang, Y. & Chen, J.S. 2008. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. Bioresource Technology 99(11): 4803-4808.

Zhang, F., Wang, K.X., Li, G.D. & Chen, J.S. 2009. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communications 11(1): 130-133.

Zhu, K., Fu, H., Zhang, J., Lv, X., Tang, J. & Xu, X. 2012. Studies on removal of NH4+-N from aqueous solution by using the activated carbons derived from rice husk. Biomass and Bioenergy 43: 18-25.

 

*Corresponding author; email: chia@ukm.edu.my

   

 

 

previous