Sains Malaysiana 49(11)(2020):
2721-2734
http://dx.doi.org/10.17576/jsm-2020-4911-11
Comparative
Adsorption Mechanism of Rice Straw Activated Carbon Activated with NaOH and KOH
(Perbandingan Mekanisma Penjerapan Karbon Teraktif Jerami Padi yang Diaktif dengan NaOH dan KOH)
MOHAMAD JANI SAAD1,4, MOHD SHAIFUL
SAJAB2, WAN NAZRI WAN BUSU4, SUFIAN MISRAN3,
SARANI ZAKARIA1, SIEW XIAN CHIN5 & CHIN HUA CHIA1*
1Bioresources and Biorefinery Laboratory, Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Research Centre for Sustainable Process
Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Forest Research Institute of Malaysia, 52100
Kepong, Selangor Darul Ehsan, Malaysia
4Malaysian Agriculture Research and Development Institute, 43400 Serdang, Selangor Darul Ehsan, Malaysia
5ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 16 December 2019/Accepted: 14 May
2020
ABSTRACT
Activated carbon (AC) was produced from rice
straw via a two-step method. Potassium hydroxide (KOH) and sodium hydroxide
(NaOH) were used as activating agent. The activated carbon (AC) samples were
used as adsorbent to remove methylene blue (MB) from aqueous solution.
Characterizations using a scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET), and Fourier
transform infrared (FTIR) spectroscopy were performed on the samples before the
MB adsorption experiments. The adsorption isotherms and kinetics analyses were
carried out under different conditions of pH, temperature, and MB concentration
to study the adsorption efficiency of the samples against the MB solution. The
adsorption kinetics of both activated carbon samples followed the
pseudo-second-order model. The adsorption capacity of the KOH rice straw
activated carbon towards MB achieved a maximum adsorption 588 mg/g as compared
to 232 mg/g of the NaOH rice straw activated carbon. The intraparticle
diffusion model indicated that the adsorption process of the activated carbon
samples toward MB included the external mass transfer and diffusion of MB
molecules into the adsorbents. Adsorption isotherm results for MB on the
activated carbon samples fit the Langmuir isotherm, suggesting monolayer
adsorption during the adsorption process.
Keywords: Activated carbon; adsorption;
adsorption isotherm; methylene blue; rice straw
ABSTRAK
Karbon teraktif dihasilkan daripada jerami padi melalui kaedah 2 peringkat. Potasium hidroksida (KOH) dan natrium hidroksida (NaOH) telah digunakan sebagai agen aktivasi. Sampel karbon teraktif (AC) telah digunakan sebagai bahan penjerap untuk menyingkirkan metilena biru (MB) daripada larutan akuas. Pencirian terhadap sampel karbon teraktif menggunakan mikroskopi penskanan elektron (SEM), luas permukaan Brunauer-Emmett-Teller (BET) danspektroskopi transformasi Fourier inframerah (FTIR) telah dijalankan sebelum uji kaji penjerapan MB. Analisis kinetik dan isoterma penjerapan dijalankan pada pelbagai keadaan pH, suhu dan kepekatan MB bagi mengkaji kecekapan penjerapan sampel terhadap larutan MB. Penjerapan kinetik untuk kedua-dua sampel karbon teraktif menuruti model tertib pseudo kedua. Kapasiti penjerapan karbon teraktif jerami padi KOH terhadap MB telah mencapai penjerapan maksimum sebanyak 588 mg/g berbanding karbon teraktif jerami padi NaOH iaitu 232 mg/g. Model peresapan intrapartikel bagi proses penjerapan sampel karbon teraktif terhadap MB merangkumi pemindahan berat luaran dan resapan molekul MB terhadap karbon teraktif. Keputusan isoterma penjerapan mengikuti isoterma Langmuir, ia menunjukkan penjerapan lapisan mono berlaku semasa proses penjerapan.
Kata kunci: Isoterma penjerapan; jerami padi; karbon teraktif; metilena biru; penjerapan
REFERENCES
Abechi, S.E., Gimba,
C.E., Uzairu, A., Kagbu,
J.A. & Ocholi, O.J. 2013. Equilibrium adsorption studies of
methylene blue onto palm kernel shell-based activated carbon. International
Refereed Journal of Engineering and Science (IRJES) 2(5): 38-45.
Annadurai, G., Juang, R.S. & Lee, D.J. 2002. Use of
cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal
of Hazardous Materials 92(3): 263-274.
Aznie, R.C. & Mohd Zainol, R. 2014. Farmers knowledge
on potential uses of rice straw: An assessment in Mada and Sekinchan, Malaysia. Geografia - Malaysian Journal of Society and Space 10(5): 30-43.
Banat, I., Singh-Nee, N.P., Singh, D. & Marchant,
R. 1996. Microbial decolorization of textile-dye-containing effluents: A
review. Bioresource Technology 58(3): 217-227.
Bansal, R.C. & Goyal, M.
2005. Activated Carbon Adsorption. Boca Raton: Taylor & Francis.
Batzias, F.A. & Sidiras,
D.K. 2007. Simulation of dye adsorption by beech sawdust as affected by pH. Journal
of Hazardous Materials 141(3): 668-679.
Bhattacharya, K.G. & Sharma, A. 2005. Kinetics and
thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes and Pigments 65(1):
51-59.
Boyd, G.E., Adamson, A.W. & Myers, L.S. 1947. The
exchange adsorption of ions from aqueous solutions by organic zeolites. II.
kinetics. Journal of the American Chemical Society 69(11): 2836-2848.
Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita,
M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G. &
Almeida, V.C. 2011. NaOH-activated carbon of high surface area produced from
coconut shell: kinetics and equilibrium studies from the methylene blue
adsorption. Chemical Engineering Journal 174(1): 117-125.
Chandrasekhar, S. & Pramada, P.N. 2006. Rice husk
ash as an adsorbent for methylene blue-effect of ashing temperature. Adsorption 12(1): 27-43.
Chia, C.H., Razali, N.F., Sajab, M.S., Zakaria, S.,
Huang, N.M. & Lim, H.N. 2013. Methylene blue adsorption on graphene oxide. Sains
Malaysiana 42(6): 819-826.
Chiou, C.T. 2002. Partition
and Adsorption of Organic Contaminants in Environmental Systems. New York: Wiley/Interscience.
Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L.
& Changhou, L. 2005. Effect of pre-carbonization of petroleum cokes on
chemical activation process with KOH. Carbon 43(11): 2295-2301.
Crini, G. 2006. Non-conventional low-cost adsorbents
for dye removal: A review. Bioresource
Technology 97: 1061-1085.
Daifullah, A.A.M., Yakout, S.M. & Elreefy, S.A.
2007. Adsorption of fluoride in aqueous solutions using KMnO4-modified
activated carbon derived from steam pyrolysis of rice straw. Journal of
Hazardous Materials 147(1-2): 633-643.
Danish, M., Ahmad, T., Nadhari, W.N.A.W., Ahmad, M.,
Khanday, W.A., Ziyang, L. & Pin, Z. 2018. Optimization of banana
trunk-activated carbon production for methylene blue-contaminated water
treatment. Applied Water Science 8(1): 1-11.
Danish, M., Hashim, R., Ibrahim, M.N.M. & Sulaiman,
O. 2014. Optimized preparation for large surface area activated carbon from
date (Phoenix dactylifera L.) stone
biomass. Biomass and Bioenergy 61: 167-178.
El-Hendawy, A.N.A. 2003. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated
carbon. Carbon 41(4): 713-722.
El-Kamash, A.M., Zaki, A.A. & El Geleel, M.A. 2005.
Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal
from waste solutions using synthetic zeolite A. Journal of Hazardous
Materials 127(1-3): 211-220.
El-Maghraby, A. & Deeb, H.A.E. 2018. Removal of a
basic dye from aqueous solution by adsorption using rice hulls. Global NEST
Journal Global NEST: The International Journal 13(1): 90-98.
Elimelech, M. 2006. The global challenge for adequate
and safe water. Journal of Water Supply: Research and Technology - Aqua 55(1): 3-10.
Foo, K.Y. & Hameed, B.H. 2011. Preparation of oil
palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH
activation for the adsorption of methylene blue. Desalination 275(1-3):
302-305.
Gao, P., Liu, Z., Xue, G., Han, B. & Zhou, M. 2011.
Preparation and characterization of activated carbon produced from rice straw
by (NH4)2HPO4 activation. Bioresource
Technology 102(3): 3645-3648.
Ghosh, D. & Bhattacharyya, K.G. 2002. Adsorption of
methylene blue on kaolinite. Applied Clay Science 20(6): 295-300.
Guo, J.Z., Li, B., Liu, L. & Lv, K. 2014. Removal
of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere 111: 225-231.
Guo, Y., Yu, K., Wang, Z. & Xu, H. 2003. Effects of
activation conditions on preparation of porous carbon from rice husk. Carbon 41(8): 1645-1648.
Hamdaoui, O. 2006. Batch study of liquid-phase
adsorption of methylene blue using cedar sawdust and crushed brick. Journal
of Hazardous Materials 135(1-3): 264-273.
Hameed, B.H. & Hakimi, H. 2008. Utilization of
durian (Durio zibethinus Murray) peel
as low cost sorbent for the removal of acid dye from aqueous solutions. Biochemical
Engineering Journal 39(2): 338-343.
Hameed, B.H., Ahmad, A.L. & Latiff, K.N.A. 2007a.
Adsorption of basic dye (methylene blue) onto activated carbon prepared from
rattan sawdust. Dyes and Pigments 75(1): 143-149.
Hameed, B.H., Din, A.T.M. & Ahmad, A.L. 2007b.
Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and
equilibrium studies. Journal of Hazardous Materials 141(3): 819-825.
Hamza, U.D., Nasri, N.S., Amin, N.A.S., Mohammed, J.
& Zain, H.M. 2016. Characteristics of oil palm shell biochar and activated
carbon prepared at different carbonization times. Desalination and Water
Treatment 57(17): 7999-8006.
Hirunpraditkoon, S., Tunthong, N., Ruangchai, A. &
Nuithitikul, K. 2011. Adsorption capacities of activated carbons prepared from
bamboo by KOH activation. World Academy of Science, Engineering and
Technology 78: 711-715.
Ho, Y.S. & Mckay, G. 2003. Sorption of dyes and
copper ions onto biosorbents. Process Biochemistry 38(7): 1047-1061.
Ho, Y.S. & Mckay, G. 1999. Pseudo-second order
model for sorption processes. Process Biochemistry 34(5): 451-465.
Iqbaldin, M.M., Mohd Iqbaldin, M., Khudzir, I., Mohd
Azlan, M., Zaidi, A., Surani, B. & Zubri, Z. 2013. Properties of coconut
shell activated carbon. Journal of Tropical Forest Science 25(4):
497-503.
Kannan, N. & Sundaram, M.M. 2001. Kinetics and
mechanism of removal of methylene blue by adsorption on various carbons-a
comparative study. Dyes and Pigments 51(1): 25-40.
Kumar, D. & Gaur, J.P. 2011. Chemical reaction- and
particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial
mat. Bioresource Technology 102(2): 633-640.
Lagergren, S. 1898. About the theory of so-called
adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens
Handlingar 24(4): 1-39.
Lillo-Ródenas, M.A., Lozano-Castelló, D.,
Cazorla-Amorós, D. & Linares-Solano, A. 2001. Preparation of activated
carbons from Spanish anthracite - II. Activation by NaOH. Carbon 39(5):
751-759.
Lin, L., Zhai, S.R., Xiao, Z.Y., Song, Y., An, Q.D.
& Song, X.W. 2013. Dye adsorption of mesoporous activated carbons produced
from NaOH-pretreated rice husks. Bioresource Technology 136: 437-443.
McMullan, G., Meehan, C., Conneely, A., Kirby, N.,
Robinson, T., Nigam, P., Banat, I.M., Marchant, R. & Smyth, W.F. 2001.
Microbial decolourisation and degradation of textile dyes. Applied
Microbiology and Biotechnology 56(1-2): 81-87.
Mohan, D., Singh, K.P., Singh, G. & Kumar, K. 2002.
Removal of dyes from wastewater using flyash, a low-cost adsorbent. Industrial
& Engineering Chemistry Research 41(15): 3688-3695.
Muniandy, L., Adam, F., Mohamed, A.R. & Ng, E.P.
2014. The synthesis and characterization of high purity mixed
microporous/mesoporous activated carbon from rice husk using chemical
activation with NaOH and KOH. Microporous and Mesoporous Materials 197:
316-323.
Oh, G.H. & Park, C.R. 2002. Preparation and
characteristics of rice-straw-based porous carbons with high adsorption
capacity. Fuel 81(3): 327-336.
Oh, G.H., Yun, C.H. & Park, C.R. 2003. Role of KOH
in the one-stage KOH activation of cellulosic biomass. Carbon 4(4):
180-184.
Okman, I., Karagöz, S., Tay, T. & Erdem, M. 2014.
Activated carbons from grape seeds by chemical activation with potassium
carbonate and potassium hydroxide. Applied Surface Science 293: 138-142.
Patil, B.S. & Kulkarni, K.S. 2012. Development of
high surface area activated carbon from waste material. International
Journal of Advanced Engineering Research and Studies I(II): 2249-8974.
Pearce, C.I., Lloyd, J.R. & Guthrie, J.T. 2003. The
removal of colour from textile wastewater using whole bacterial cells: A
review. Dyes and Pigments 58: 179-196.
Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad,
A. 2010. Adsorption of methylene blue on low-cost adsorbents: A review. Journal
of Hazardous Materials 177: 70-80.
Raoul, T.T.D., Gabche, A.S., Mbadcam, K.J.,
Ndifor-angwafor, N.G. & Nsami, N.J. 2014. Kinetics and equilibrium studies
of adsorption of phenol in aqueous solution onto activated carbon prepared from
rice and coffee husks. International Journal of Engineering and Technical
Research 2(10): 166-173.
Rubín, E., Rodríguez, P., Herrero, R. & Sastre De
Vicente, M.E. 2010. Adsorption of methylene blue on chemically modified algal
biomass: Equilibrium, dynamic, and surface data. Journal of Chemical and
Engineering Data 55(12): 5707-5714.
Rugayah, A.F., Astimar, A.A. & Norzita, N. 2014.
Preparation and characterisation of activated carbon from palm kernel shell by
physical activation with steam. Journal of Oil Palm Research 26(3):
251-264.
Sajab, M.S., Chia, C.H., Zakaria, S. & Khiew, P.S.
2013. Cationic and anionic modifications of oil palm empty fruit bunch fibers
for the removal of dyes from aqueous solutions. Bioresource Technology 128: 571-577.
Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob,
M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf
core fibres for removal of methylene blue from aqueous solution. Bioresource
Technology 102(15): 7237-7243.
San Miguel, G., Fowler, G.D. & Sollars, C.J. 2003.
A study of the characteristics of activated carbons produced by steam and carbon
dioxide activation of waste tyre rubber. Carbon 41(5): 1009-1016.
Senthilkumaar, S., Kalaamani, P. & Subburaam, C.V.
2006. Liquid phase adsorption of crystal violet onto activated carbon derived
from male flowers of coconut tree. Journal
of Hazardous Materials 136: 800-808.
Sharaf, G. & Hassan, H. 2014. Removal of copper
ions from aqueous solution using silica derived from rice straw: Comparison
with activated charcoal. International Journal of Environmental Science and
Technology 11(6): 1581-1590.
Sharma, S. & Bhattacharya, A. 2017. Drinking water
contamination and treatment techniques. Applied Water Science 7(3):
1043-1067.
Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong,
Z. & Huang, Y. 2013. The comparison of two activation techniques to prepare
activated carbon from corn cob. Biomass and Bioenergy 48: 250-256.
Soltani, N., Bahrami, A., Pech-Canul, M.I. &
González, L.A. 2015. Review on the physicochemical treatments of rice husk for
production of advanced materials. Chemical Engineering Journal 264:
899-935.
Sreńscek-Nazzal, J., Kamińska, W.,
Michalkiewicz, B. & Koren, Z.C. 2013. Production, characterization and
methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial
Crops and Products 47: 153-159.
Sulyman, M., Namiesnik, J. & Gierak, A. 2017.
Low-cost adsorbents derived from agricultural by-products/wastes for enhancing
contaminant uptakes from wastewater: A review. Polish Journal Environmental Studies 26(2):
479-510.
Sun, Q. & Yang, L. 2003. The adsorption of basic
dyes from aqueous solution on modified peat-resin particle. Water Research 37(7): 1535-1544.
Tan, I.A.W., Ahmad, A.L. & Hameed, B.H. 2008.
Adsorption of basic dye on high-surface-area activated carbon prepared from
coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of
Hazardous Materials 154(1-3): 337-346.
Viswanathan, B., Neel, P. & Varadarajan, T. 2009. Methods of Activation and Specific
Applications of Carbon Materials. Chennai, India: National Centre for Catalysis Research IIT Madras.
Weber, W. 1963. Kinetics of adsorption on carbon from
solution. Journal of the Sanitary Engineering Division 89(2): 31-60.
Wu, M., Guo, Q. & Fu, G. 2013. Preparation and
characteristics of medicinal activated carbon powders by CO2 activation of peanut shells. Powder Technology 247: 188-196.
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H.,
Lu, H. & Chen, Y. 2012. Chemical characterization of rice straw-derived
biochar for soil amendment. Biomass and Bioenergy 47: 268-276.
Yu, Q., Li, M., Ning, P., Yi, H. & Tang, X. 2014.
Preparation and phosphine adsorption of activated carbon prepared from walnut
shells by KOH chemical activation. Separation Science and Technology
(Philadelphia) 49(15): 2366-2375.
Zhang, F., Ma, H., Chen, J., Li, G.D., Zhang, Y. &
Chen, J.S. 2008. Preparation and gas storage of high surface area microporous
carbon derived from biomass source cornstalks. Bioresource Technology 99(11): 4803-4808.
Zhang, F., Wang, K.X., Li, G.D. & Chen, J.S. 2009.
Hierarchical porous carbon derived from rice straw for lithium ion batteries
with high-rate performance. Electrochemistry Communications 11(1):
130-133.
Zhu, K., Fu, H., Zhang, J., Lv, X., Tang, J. & Xu,
X. 2012. Studies on removal of NH4+-N from aqueous
solution by using the activated carbons derived from rice husk. Biomass and
Bioenergy 43: 18-25.
*Corresponding author; email: chia@ukm.edu.my
|