Sains Malaysiana 49(11)(2020): 2735-2744
http://dx.doi.org/10.17576/jsm-2020-4911-12
A Tyrosine-Based Nanosensor for Rapid Sensitive
Detection of Copper (II) Ions
(Pengesan Nano Berasaskan Tirosina untuk
Pengesanan Sensitif Pantas Ion Tembaga (II))
JIAQI
LIAN1,2, PANDENG MIAO2,3, NA LI2,3, ABDUL JAMIL KHAN2, XIANG JI1* & FENG ZHANG1,2,4
1School of Life
Science and Technology, Inner Mongolia University of Science and Technology, Baotou
014010, P. R. China
2Biomedical Nanocenter, School of Life Science,
Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
3Terahertz Technology Innovation Research
Institute, Shanghai Key Laboratory of Modern Optical System, Terahertz Science
Cooperative Innovation Center, University of Shanghai for Science and
Technology, 516 Jungong Road, Shanghai 200093, P. R. China
4Key Laboratory of Oral Medicine, Guangzhou
Institute of Oral Disease, Stomatology Hospital, Department of Biomedical
Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou
511436, P. R. China
Received: 17 January 2020/Accepted:
8 June 2020
ABSTRACT
Most of the chromophores of fluorescent peptides
contain aromatic amino acids with conjugated double bonds, among which tyrosine
(Y) has become the focus of researches due to its unique physicochemical
(optical, redox, and metal chelation) properties. However, there are few studies
on the self-assembly and polymerisation of single. This study shows that the
phenol group of Y can be oxidized into benzoquinone group in alkaline
conditions and then undergoes polymerisation and further self-assembles into
nanoparticles (NPs). The product of pYoxNPs
have a strong fluorescence emission peak at 463 nm, and Cu2+ can
spontaneously bind to it and dramatically quench their fluorescence. Based on
these findings, we developed a rapid, sensitive and specific nanosensor for
detecting Cu2+. When the concentration of Cu2+ is within
the range of 40 μM - 1 mM, we can obtain a good linear correlation between
the fluorescence intensity of pYoxNPs and the
concentration of copper ions, and the limit of detection (LOD) is determined to
37.26 μM. In comparison to other modern methods for sensing Cu2+,
this method has advantages of simplicity of material synthesis, low cost,
robust and rapid in sensing reaction, so we envision a good prospect for Cu2+ detection applications in both bulk and harsh environments.
Keywords: Copper ion; fluorescence quenching; oxidation; polymerisation;
tyrosine
ABSTRAK
Kebanyakan kromofor peptida pendarfluor mengandungi asid amino aromatik
dengan ikatan berganda konjugasi, antaranya tyrosin (Y) telah menjadi tumpuan
penyelidikan kerana ciri unik fizikokimianya (optik, redoks dan pengkelatan
logam). Walau bagaimanapun, terdapat beberapa kajian mengenai pemasangan diri
dan pempolimeran tunggal Y. Dalam kajian ini, kumpulan fenol Y boleh
dioksidakan kepada kumpulan benzoquinon dalam keadaan alkali dan kemudian
menjalani pempolimeran dan seterusnya menyambung diri ke nanozarah (NPs). pYoxNPs produk mempunyai puncak pelepasan
pendarfluor yang kuat pada 463 nm dan Cu2+ secara spontan dapat
mengikat mereka dan secara mendadak memadamkan pendarfluor mereka. Berdasarkan
penemuan ini, kami membangunkan pengesan nano pesat, sensitif dan khusus untuk
mengesan Cu2+. Apabila kepekatan Cu2+ berada dalam julat
40 μM - 1 mM, kita boleh mendapatkan korelasi linear yang baik antara
keamatan pendarfluor pYoxNPs dan kepekatan ion tembaga, dan had
pengesanan (LOD) ditentukan kepada 37.26 μM. Berbanding dengan kaedah
moden yang lain untuk mengesan Cu2+, ini memperlihatkan kelebihan
dalam kesederhanaan sintesis bahan, kos rendah dan mudah diperoleh, cepat dan
pantas dalam reaksi penderiaan, jadi kami membayangkan prospek yang baik untuk
aplikasi pengesanan Cu2+ dalam persekitaran pukal dan mencabar.
Kata kunci: Ion tembaga; pelindapkejutan pendarfluor; pengoksidaan;
pempolimeran; tirosina
REFERENCES
Baker, Z.N., Cobine, P.A. & Leary, S.C. 2017.
The mitochondrion: A central architect of copper homeostasis. Metallomics 9(11): 1501-1512.
Bartesaghi, S. & Radi, R. 2018. Fundamentals on
the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 14: 618-625.
Bergwerff, C.E., Luman, M., Blom, H.J. &
Oosterlaan, J. 2016. No tryptophan, tyrosine and phenylalanine abnormalities in
children with attention-deficit/hyperactivity disorder. PLoS ONE 11(3): e0151100.
Brewer, G.J. 2012. Copper excess, zinc deficiency,
and cognition loss in Alzheimer's disease. Biofactors 38(2): 107-113.
Bulcke, F., Dringen, R. & Scheiber, I.F. 2017.
Neurotoxicity of copper. Adv. Neurobiol. 18: 313-343.
Contino, A., Maccarrone, G., Zimbone, M., Reitano,
R., Musumeci, P., Calcagno, L. & Oliveri, I.P. 2016. Tyrosine capped silver
nanoparticles: A new fluorescent sensor for the quantitative determination of
copper(ii) and cobalt(ii) ions. J.
Colloid Interface Sci. 462: 216-222.
Ding, D., Guerette, P.A., Fu, J., Zhang, L., Irvine, S.A. & Miserez, A. 2015. From soft self-healing gels to stiff films in suckerin-based materials through modulation of crosslink density and beta-sheet content. Adv. Mater. 27(26): 3953-3961.
Ghasemian, E., Naghoni, A., Tabaraie, B. &
Tabaraie, T. 2012. In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid
xtt colorimetry and agar dilution method. J.
Mycol. Med. 22(4): 322-328.
Ghosh, D.
& Chattopadhyay, N. 2015. Gold and silver nanoparticles based super
quenching of fluorescence: A review. Journal of Luminescence 160: 223-232.
Guo, J., Ramachandran, S., Zhong, R., Lal, R.
& Zhang, F. 2019. Generating cyan fluorescence with de novo tripeptides: An in vitro mutation study on the role
of single amino acid residues and their sequence. ChemBioChem 20(18): 2324-2330.
Hemmateenejad,
B. & Yousefinejad, S. 2013. Interaction study of human serum
albumin and ZNS nanoparticles using fluorescence spectrometry. Journal of Molecular Structure 1037: 317-322.
Kamaraj, B. & Purohit, R. 2014. Mutational
analysis of oculocutaneous albinism: A compact review. Biomed. Res. Int. 2014: 905472.
Kusunuru, A.K., Tatina, M., Yousuf, S.K. &
Mukherjee, D. 2013. Copper mediated stereoselective synthesis of c-glycosides
from unactivated alkynes. Chem. Comm. 49(86):
10154-10156.
Lee, C. & Lee, S.Y. 2015. Mussel-inspired
bolaamphiphile sticky self-assemblies for the preparation of magnetic
nanoparticles. Colloids Surf B
Biointerfaces 127: 89-95.
Lee, S., Liang, R., Voth, G.A. & Swanson, J.M.
2016. Computationally efficient multiscale reactive molecular dynamics to
describe amino acid deprotonation in proteins. J. Chem. Theory Comput. 12(2): 879-891.
Li, M., Fu, Y. & Jin, L. 2017. A dual-signal
sensing system based on organic dyes-LDHs film for fluorescence detection of
cysteine. Dalton Trans 46(22):
7284-7290.
Li, X., Li, K., Farajtabar, A., He, Y., Chen, G.
& Zhao, H. 2019. Solubility of d-tryptophan and l-tyrosine in several
organic solvents: Determination and solvent effect. Journal of Chemical & Engineering Data 64(7): 3164-3169.
Lin, Y.W., Huang, C.C. & Chang, H.T. 2011. Gold
nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136(5): 863-871.
Liu, Y-S., Zhang, P., Zhong, R., Bai, Z-J., Guo, J.,
Zhao, G-F. & Zhang, F. 2015. Fluorimetric study on the interaction between
fluoresceinamine and bovine serum albumin. Nuclear
Science and Techniques 26(3): 030505.
Nieder, R., Benbi, D.K. & Reichl, F.X.
2018. Microelements and their role in human health. In Soil Components and Human Health. Springer Netherlands, Dordrecht.
pp. 317-374.
Parmar, A.S., James, J.K., Grisham, D.R., Pike, D.H.
& Nanda, V. 2016. Dissecting electrostatic contributions to folding and
self-assembly using designed multicomponent peptide systems. J. Am. Chem. Soc. 138(13): 4362-4367.
Pinotsi, D., Grisanti, L., Mahou, P., Gebauer, R.,
Kaminski, C.F., Hassanali, A. & Kaminski Schierle, G.S. 2016. Proton
transfer and structure-specific fluorescence in hydrogen bond-rich protein
structures. J. Am. Chem. Soc. 138(9):
3046-3057.
Ren, X., Zou, Q., Yuan, C., Chang, R., Xing, R.
& Yan, X. 2019. Frontispiece: The dominant role of oxygen in modulating the
chemical evolution pathways of tyrosine in peptides: Dityrosine or melanin. Angewandte Chemie International Edition 58(18): 5872-5876.
Teale, F.W. & Weber, G. 1957. Ultraviolet
fluorescence of the aromatic amino acids. Biochem.
J. 65(3): 476-482.
Tsien, R.Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67: 509-544.
Verlag, S. 2006. Principles
of Fluorescence Spectroscopy. New York: Plenum Press.
White, B.R. & Holcombe, J.A. 2007. Fluorescent
peptide sensor for the selective detection of cu2+. Talanta 71(5): 2015-2020.
Xu, X., Daniel, W.L., Wei, W. & Mirkin, C.A.
2010. Colorimetric Cu(2+) detection using DNA-modified
gold-nanoparticle aggregates as probes and click chemistry. Small 6(5): 623-626.
Yu, H., Wang, D., Zou, L., Zhang, Z., Xu, H., Zhu,
F., Ren, X., Xu, B., Yuan, J., Liu, J., Spencer, P.S. & Yang, X. 2018.
Proteomic alterations of brain subcellular organelles caused by low-dose copper
exposure: Implication for Alzheimer's disease. Archives of Toxicology 92(4): 1363-1382.
Yuan, M., Zhong, R., Yun, X., Hou, J., Du, Q., Zhao,
G. & Zhang, F. 2016. A fluorimetric study on the interaction between a
Trp-containing beta-strand peptide and amphiphilic polymer-coated gold
nanoparticles. Luminescence 31(1):
47-53.
Zhong, R., Liu, Y., Zhang, P., Liu, J., Zhao, G.
& Zhang, F. 2014. Discrete nanoparticle-BSA conjugates manipulated by
hydrophobic interaction. ACS Applied
Materials & Interfaces 6(22): 19465-19470.
*Corresponding
author; email: jixiang@imust.cn
|