Sains Malaysiana 49(11)(2020): 2735-2744

http://dx.doi.org/10.17576/jsm-2020-4911-12

 

A Tyrosine-Based Nanosensor for Rapid Sensitive Detection of Copper (II) Ions

(Pengesan Nano Berasaskan Tirosina untuk Pengesanan Sensitif Pantas Ion Tembaga (II))

 

JIAQI LIAN1,2, PANDENG MIAO2,3, NA LI2,3, ABDUL JAMIL KHAN2, XIANG JI1* & FENG ZHANG1,2,4

 

1School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China

 

2Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China

 

3Terahertz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China

 

4Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China

 

Received: 17 January 2020/Accepted: 8 June 2020

 

ABSTRACT

Most of the chromophores of fluorescent peptides contain aromatic amino acids with conjugated double bonds, among which tyrosine (Y) has become the focus of researches due to its unique physicochemical (optical, redox, and metal chelation) properties. However, there are few studies on the self-assembly and polymerisation of single. This study shows that the phenol group of Y can be oxidized into benzoquinone group in alkaline conditions and then undergoes polymerisation and further self-assembles into nanoparticles (NPs). The product of pYoxNPs have a strong fluorescence emission peak at 463 nm, and Cu2+ can spontaneously bind to it and dramatically quench their fluorescence. Based on these findings, we developed a rapid, sensitive and specific nanosensor for detecting Cu2+. When the concentration of Cu2+ is within the range of 40 μM - 1 mM, we can obtain a good linear correlation between the fluorescence intensity of pYoxNPs and the concentration of copper ions, and the limit of detection (LOD) is determined to 37.26 μM. In comparison to other modern methods for sensing Cu2+, this method has advantages of simplicity of material synthesis, low cost, robust and rapid in sensing reaction, so we envision a good prospect for Cu2+ detection applications in both bulk and harsh environments.

 

Keywords: Copper ion; fluorescence quenching; oxidation; polymerisation; tyrosine

 

ABSTRAK

Kebanyakan kromofor peptida pendarfluor mengandungi asid amino aromatik dengan ikatan berganda konjugasi, antaranya tyrosin (Y) telah menjadi tumpuan penyelidikan kerana ciri unik fizikokimianya (optik, redoks dan pengkelatan logam). Walau bagaimanapun, terdapat beberapa kajian mengenai pemasangan diri dan pempolimeran tunggal Y. Dalam kajian ini, kumpulan fenol Y boleh dioksidakan kepada kumpulan benzoquinon dalam keadaan alkali dan kemudian menjalani pempolimeran dan seterusnya menyambung diri ke nanozarah (NPs). pYoxNPs produk mempunyai puncak pelepasan pendarfluor yang kuat pada 463 nm dan Cu2+ secara spontan dapat mengikat mereka dan secara mendadak memadamkan pendarfluor mereka. Berdasarkan penemuan ini, kami membangunkan pengesan nano pesat, sensitif dan khusus untuk mengesan Cu2+. Apabila kepekatan Cu2+ berada dalam julat 40 μM - 1 mM, kita boleh mendapatkan korelasi linear yang baik antara keamatan pendarfluor pYoxNPs dan kepekatan ion tembaga, dan had pengesanan (LOD) ditentukan kepada 37.26 μM. Berbanding dengan kaedah moden yang lain untuk mengesan Cu2+, ini memperlihatkan kelebihan dalam kesederhanaan sintesis bahan, kos rendah dan mudah diperoleh, cepat dan pantas dalam reaksi penderiaan, jadi kami membayangkan prospek yang baik untuk aplikasi pengesanan Cu2+ dalam persekitaran pukal dan mencabar.

 

Kata kunci: Ion tembaga; pelindapkejutan pendarfluor; pengoksidaan; pempolimeran; tirosina

 

REFERENCES

Baker, Z.N., Cobine, P.A. & Leary, S.C. 2017. The mitochondrion: A central architect of copper homeostasis. Metallomics 9(11): 1501-1512.

Bartesaghi, S. & Radi, R. 2018. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 14: 618-625.

Bergwerff, C.E., Luman, M., Blom, H.J. & Oosterlaan, J. 2016. No tryptophan, tyrosine and phenylalanine abnormalities in children with attention-deficit/hyperactivity disorder. PLoS ONE 11(3): e0151100.

Brewer, G.J. 2012. Copper excess, zinc deficiency, and cognition loss in Alzheimer's disease. Biofactors 38(2): 107-113.

Bulcke, F., Dringen, R. & Scheiber, I.F. 2017. Neurotoxicity of copper. Adv. Neurobiol. 18: 313-343.

Contino, A., Maccarrone, G., Zimbone, M., Reitano, R., Musumeci, P., Calcagno, L. & Oliveri, I.P. 2016. Tyrosine capped silver nanoparticles: A new fluorescent sensor for the quantitative determination of copper(ii) and cobalt(ii) ions. J. Colloid Interface Sci. 462: 216-222.

Ding, D., Guerette, P.A., Fu, J., Zhang, L., Irvine, S.A. & Miserez, A. 2015. From soft self-healing gels to stiff films in suckerin-based materials through modulation of crosslink density and beta-sheet content. Adv. Mater. 27(26): 3953-3961.

Ghasemian, E., Naghoni, A., Tabaraie, B. & Tabaraie, T. 2012. In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid xtt colorimetry and agar dilution method. J. Mycol. Med. 22(4): 322-328.

Ghosh, D. & Chattopadhyay, N. 2015. Gold and silver nanoparticles based super quenching of fluorescence: A review. Journal of Luminescence 160: 223-232.

Guo, J., Ramachandran, S., Zhong, R., Lal, R. & Zhang, F. 2019. Generating cyan fluorescence with de novo tripeptides: An in vitro mutation study on the role of single amino acid residues and their sequence. ChemBioChem 20(18): 2324-2330.

Hemmateenejad, B. & Yousefinejad, S. 2013. Interaction study of human serum albumin and ZNS nanoparticles using fluorescence spectrometry. Journal of Molecular Structure 1037: 317-322.

Kamaraj, B. & Purohit, R. 2014. Mutational analysis of oculocutaneous albinism: A compact review. Biomed. Res. Int. 2014: 905472.

Kusunuru, A.K., Tatina, M., Yousuf, S.K. & Mukherjee, D. 2013. Copper mediated stereoselective synthesis of c-glycosides from unactivated alkynes. Chem. Comm. 49(86): 10154-10156.

Lee, C. & Lee, S.Y. 2015. Mussel-inspired bolaamphiphile sticky self-assemblies for the preparation of magnetic nanoparticles. Colloids Surf B Biointerfaces 127: 89-95.

Lee, S., Liang, R., Voth, G.A. & Swanson, J.M. 2016. Computationally efficient multiscale reactive molecular dynamics to describe amino acid deprotonation in proteins. J. Chem. Theory Comput. 12(2): 879-891.

Li, M., Fu, Y. & Jin, L. 2017. A dual-signal sensing system based on organic dyes-LDHs film for fluorescence detection of cysteine. Dalton Trans 46(22): 7284-7290.

Li, X., Li, K., Farajtabar, A., He, Y., Chen, G. & Zhao, H. 2019. Solubility of d-tryptophan and l-tyrosine in several organic solvents: Determination and solvent effect. Journal of Chemical & Engineering Data 64(7): 3164-3169.

Lin, Y.W., Huang, C.C. & Chang, H.T. 2011. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136(5): 863-871.

Liu, Y-S., Zhang, P., Zhong, R., Bai, Z-J., Guo, J., Zhao, G-F. & Zhang, F. 2015. Fluorimetric study on the interaction between fluoresceinamine and bovine serum albumin. Nuclear Science and Techniques 26(3): 030505.

Nieder, R., Benbi, D.K. & Reichl, F.X. 2018. Microelements and their role in human health. In Soil Components and Human Health. Springer Netherlands, Dordrecht. pp. 317-374.

Parmar, A.S., James, J.K., Grisham, D.R., Pike, D.H. & Nanda, V. 2016. Dissecting electrostatic contributions to folding and self-assembly using designed multicomponent peptide systems. J. Am. Chem. Soc. 138(13): 4362-4367.

Pinotsi, D., Grisanti, L., Mahou, P., Gebauer, R., Kaminski, C.F., Hassanali, A. & Kaminski Schierle, G.S. 2016. Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. J. Am. Chem. Soc. 138(9): 3046-3057.

Ren, X., Zou, Q., Yuan, C., Chang, R., Xing, R. & Yan, X. 2019. Frontispiece: The dominant role of oxygen in modulating the chemical evolution pathways of tyrosine in peptides: Dityrosine or melanin. Angewandte Chemie International Edition 58(18): 5872-5876.

Teale, F.W. & Weber, G. 1957. Ultraviolet fluorescence of the aromatic amino acids. Biochem. J. 65(3): 476-482.

Tsien, R.Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67: 509-544.

Verlag, S. 2006. Principles of Fluorescence Spectroscopy. New York: Plenum Press.

White, B.R. & Holcombe, J.A. 2007. Fluorescent peptide sensor for the selective detection of cu2+. Talanta 71(5): 2015-2020.

Xu, X., Daniel, W.L., Wei, W. & Mirkin, C.A. 2010. Colorimetric Cu(2+) detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small 6(5): 623-626.

Yu, H., Wang, D., Zou, L., Zhang, Z., Xu, H., Zhu, F., Ren, X., Xu, B., Yuan, J., Liu, J., Spencer, P.S. & Yang, X. 2018. Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure: Implication for Alzheimer's disease. Archives of Toxicology 92(4): 1363-1382.

Yuan, M., Zhong, R., Yun, X., Hou, J., Du, Q., Zhao, G. & Zhang, F. 2016. A fluorimetric study on the interaction between a Trp-containing beta-strand peptide and amphiphilic polymer-coated gold nanoparticles. Luminescence 31(1): 47-53.

Zhong, R., Liu, Y., Zhang, P., Liu, J., Zhao, G. & Zhang, F. 2014. Discrete nanoparticle-BSA conjugates manipulated by hydrophobic interaction. ACS Applied Materials & Interfaces 6(22): 19465-19470.

 

*Corresponding author; email: jixiang@imust.cn

 

 

 

previous