Sains Malaysiana 49(11)(2020): 2801-2809
http://dx.doi.org/10.17576/jsm-2020-4911-19
Photophysical Properties and Energy Transfer Mechanism in PFO/TiO2/MEH-PPV
Nanocomposite Thin Films
(Sifat Fotofizikal dan Mekanisma Pemindahan Tenaga dalam Filem Nipis Nano Komposit PFO/TiO2/MEH-PPV)
SAMEER ALBATI1, MOHAMMAD HAFIZUDDIN HJ.
JUMALI1*, BANDAR ALI AL ASBAHI2,3, SAIF M.H. QAID2 &
CHI CHIN YAP1
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh
11451, Saudi Arabia
3Department of Physics, Faculty of Science, Sana'a University,
Yemen
Received: 16 December 2019/Accepted: 22 May 2020
ABSTRACT
Improvement
in photophysical properties of
poly-9,9-dioctylfluorene (PFO)/10 wt. % TiO2 nanoparticle thin film
as a result of systematic additions of
poly(2-methoxy-5(2-ethylhexyl)-1,4-phenylenevinylene (MEH-PPV) were
investigated. The nanocomposite blends were prepared with additions of MEH-PPV
up to 3.0 wt. % of the total weight. All blends were prepared using the
solution blending method and subsequently spin-coated onto glass substrates.
The UV-Vis absorption and photoluminescence characterizations showed the
intensification of the primary-color emissions of the thin films with the Förster resonance as the primary energy transfer mechanism
from PFO to MEH-PPV. Important photophysical parameters, such as the Förster radius
excited state lifetime (
), fluorescence quantum
yield of the donor (φ), quenching constant (
), quenching rate
constant (
), distance between the
donor and acceptor (
), energy transfer
lifetime (
, and energy transfer
rate (
display better values with increasing the
contents of MEH-PPV by 2.5 wt. %, suggesting an ordered improvement on the photophysical properties of the thin film. Finally, a
possible underlying mechanism describing the enhancement of the photophysical properties was proposed.
Keywords:
Donor/acceptor; energy transfer properties; Förster resonance energy transfer; optical properties
ABSTRAK
Peningkatan sifat fotofizikal filem nipis adunan poli-9, 9-dioktilflorin (PFO)/10 bt % nanozarah TiO2 dengan penambahan secara sistematik poli(2-metoksi-5(2-etilheksil)-1,
4-fenileenevinilene (MEH-PPV) adalah dibuktikan. Adunan nanokomposit ini disediakan dengan menambah MEH-PPV sehingga 3.0 bt % daripada berat keseluruhan. Kesemua adunan disediakan menggunakan teknik adunan larutan dan kemudiannya dimendapkan ke atas substrat kaca menggunakan teknik salutan berputar. Pencirian penyerapan UV-Vis dan fotoluminesens menunjukkan peningkatan keamatan pancaran filem nipis dengan pemindahan tenaga resonans Förster sebagai mekanisma pemindahan tenaga primer daripada PFO kepada MEH-PPV. Semua parameter fotofizikal yang penting seperti jejari Förster
, jangka hayat keadaan teruja(
), hasilan kuantum pendarfluor oleh penderma (φ), pemalar pelindapkejutan (
), pemalar kadar pelindapkejutan (
), jarak antara penderma dan penerima (), jangka hayat pemindahan tenaga (
dan kadar pemindahan tenaga (
menunjukkan nilai yang lebih baik dengan penambahan MEH-PPV sekaligus membuktikan penambahbaikan yang teratur terhadap sifat fotofizikal filem nipis. Dengan kehadiran nanozarah, keamatan sinaran warna prmier telah meningkat dengan pancaran yang seimbang antara PFO dan MEH_PPV Berjaya dicapai pada kandungan MEH-PPV sebanyak 2.5 bt % mencadangkan peningkatan yang teratur pada sifat fotozikal filem nipis. Kesimpulannya, mekasnima yang sesuai untuk menerangkan peningkatan sifat fotofizikal turut dicadangkan.
Kata kunci: Pemindahan tenaga resonan Förster; penderma/penerima; sifat optik; sifat pemindahan tenaga
REFERENCES
Al-Asbahi, B.A. 2018. Influence of SiO2/TiO2 nanocomposite on the optoelectronic properties of PFO/MEH-PPV-based OLED
devices. Polymers 10(7): 800-806.
Al-Asbahi, B.A. 2017. Energy transfer mechanism and optoelectronic
properties of (PFO/ TiO2)/Fluorol 7GA nanocomposite thin films. Optical
Materials 72: 644-649.
Al-Asbahi, B.A., Haji Jumali, M.H. & AlSalhi, M.S. 2016. Enhanced
optoelectronic properties of PFO/Fluorol 7GA hybrid light emitting diodes via
additions of TiO2 nanoparticles. Polymers 8(9): 334-342.
Al-Asbahi, B.A., Jumali, M.H.H., Yap, C.C., Flaifel, M.H. & Salleh,
M.M. 2013a. Photophysical properties and energy transfer mechanism of
PFO/Fluorol 7GA hybrid thin films. Journal of Luminescence 142: 57-65.
Al-Asbahi, B.A., Jumali, M.H.H., Yap, C.C., Salleh, M.M. & Alsalhi,
M.S. 2013b. Inhibition of dark quenching by TiO2 nanoparticles
content in novel PFO/Fluorol 7GA hybrid: A new role to improve OLED
performance. Chemical Physics Letters 570: 109-112.
Albrecht, C. 2008. Joseph R. Lakowicz: Principles of fluorescence
spectroscopy. Analytical and Bioanalytical Chemistry 390(5): 1223-1224.
Ciotta, E., Prosposito, P. & Pizzoferrato, R. 2019. Positive curvature
in Stern-Volmer plot described by a generalized model for static quenching. Journal
of Luminescence 206: 518-522.
Cossiello, R.F., Susman, M.D., Aramendía, P.F. & Atvars, T.D.Z. 2010.
Study of solvent-conjugated polymer interactions by polarized spectroscopy:
MEH–PPV and Poly(9,9′-dioctylfluorene-2,7-diyl). Journal of
Luminescence 130(3): 415-423.
Hegde, V., Chauhan, N., Kumar, V., Viswanath, C.S.D., Mahato, K.K. &
Kamath, S.D. 2019. Effects of high dose gamma irradiation on the optical
properties of Eu3+ doped zinc sodium bismuth borate glasses for red
LEDs. Journal of Luminescence 207: 288-300.
Huang, T.H., Chi, X.C., Xu, T.N., Zhang, J.R., Xu, H.Y., Zhu, Z.Y., Yu,
R.B., Wang, Y.H. & Zhang, H.Z. 2018. Effect of Ag nanoparticles on the
photoluminescence of poly
[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]. Journal of
Photochemistry and Photobiology A: Chemistry 356(2018): 334-339.
Huang, J., Li, G., Wu, E., Xu, Q. & Yang, Y. 2006. Achieving
high‐efficiency polymer white‐light‐emitting devices. Advanced
Materials 18(1): 114-117.
Jumali, M.H.H., Al-Asbahi, B.A., Yap, C.C., Salleh, M.M. & Alsalhi,
M.S. 2012. Optoelectronic property enhancement of conjugated polymer in poly
(9,9′-di-n-octylfluorenyl-2.7-diyl)/titania nanocomposites. Thin Solid
Films 524: 257-262.
Karthikeyan, B. 2017. Förster resonance energy transfer and excited state
life time reduction of rhodamine 6G with NiO nanorods in PVP films. Spectrochimica
Acta-Part A: Molecular and Biomolecular Spectroscopy 173: 301-306.
Kasparek, C. & Blom, P.W.M. 2017. Solution-processed multilayer
polymer light-emitting diode without intermixing. Applied Physics Letters 110(2): 023302.
Lee, S.E., Oh, J.H., Baek, H.J., Kim, S., Do, Y.R. & Kim, Y.K. 2019.
Realization of high-color-quality white-by-blue organic light-emitting diodes
with yellow and red phosphor films. Journal of Luminescence 207:
195-200.
Li, X., Bai, Z., Liu, B., Li, T. & Lu, D. 2017. From starting
formation to the saturation content of the β-phase in
poly(9,9-dioctylfluorene) toluene solutions. Journal of Physical Chemistry C 121(27): 14443-14450.
Liu, J., Shi, Y. & Yang, Y. 2001. Improving the performance of polymer
light-emitting diodes using polymer solid solutions. Applied Physics Letters 79(5): 578-580.
Madhwal, D., Rait, S.S., Verma, A., Kumar, A., Bhatnagar, P.K., Mathur,
P.C. & Onoda, M. 2010. Increased luminance of MEH–PPV and PFO based PLEDs
by using salmon DNA as an electron blocking layer. Journal of Luminescence 130(2): 331-333.
Nedumpara, R.J., Manu, P.J., Vallabhan, C.P.G., Nampoori, V.P.N. &
Radhakrishnan, P. 2008. Energy transfer studies in dye mixtures in different
solvent environments. Optics & Laser Technology 40(7): 953-957.
Pandey, K.K., Joshi, H.C. & Pant, T.C. 1988. Excitation energy
migration and transfer in a dye pair in PMMA. Journal of Luminescence 42(4): 197-203.
Perevedentsev, A., Chander, N., Kim, J.S. & Bradley, D.D.C. 2016.
Spectroscopic properties of poly(9,9-dioctylfluorene) thin films possessing
varied fractions of β-phase chain segments: Enhanced photoluminescence efficiency
via conformation structuring. Journal of Polymer Science, Part B: Polymer
Physics 54(19): 1995-2006.
Prakash, A. & Katiyar, M. 2016. Effect of guest concentration on
carrier transportation in blends of conjugated polymers. Organic Electronics 39: 50-58.
Schweitzer, C. & Schmidt, R. 2003. Physical mechanisms of generation
and deactivation of singlet oxygen. Chemical Reviews 103(5): 1685-1758.
Shen, F., He, F., Lu, D., Xie, Z., Xie, W., Ma, Y. & Hu, B. 2006.
Bright and colour stable white polymer light-emitting diodes. Semiconductor
Science and Technology 21(2): L16-L19.
Shin, S.B., Gong,
S.C., Lee, H.M., Jang, J.G., Gong, M.S., Ryu, S.O., Lee, J.Y., Chang, Y.C.
& Chang, H.J. 2009. Improving light efficiency of white polymer light
emitting diodes by introducing the TPBi exciton protection layer. Thin
Solid Films 517(14): 4143-4146.
Su, H., Wu, F., Shu, C., Tung, Y., Chi, Y. & Lee, G. 2005.
Polyfluorene containing diphenylquinoline pendants and their applications in
organic light emitting diodes. Journal of Polymer Science Part A: Polymer
Chemistry 43(4): 859-869.
Thomas, S., Grohens, Y. & Jyotishkumar, P. 2014. Characterization of Polymer Blends: Miscibility, Morphology and
Interfaces. New York: John Wiley
& Sons. pp. 1-901.
Winokur, M.J., Slinker, J. & Huber, D.L. 2003. Structure,
photophysics, and the order-disorder transition to the β-phase in poly (9,
9-(di-n, n-octyl) fluorene). Physical Review B 67(18): 184106.
Yan, F., Xing, G., Chen, R., Demir, H.V., Sun, H., Sum, T.C. & Sun,
X.W. 2015. Efficient three-color white organic light-emitting diodes with a
spaced multilayer emitting structure. Applied Physics Letters 106(2):
023302.
Yang, S.H. & Zhuang, D.W. 2011. Enhancement of efficiency of
multilayer polymer light-emitting diodes by inserting blocking layers. Journal
of Luminescence 131(4): 801-807.
Zhang, L., Li, X.L., Luo, D., Xiao, P., Xiao, W., Song, Y., Ang, Q. &
Liu, B. 2017. Strategies to achieve high-performance white organic
light-emitting diodes. Materials 10(12): 1378-1434.
Zhou, J., Zou, J., Dai, C., Zhang, Y., Luo, X. & Liu, B. 2018.
High-efficiency and high-luminance three-color white organic light-emitting
diodes with low efficiency roll-off. ECS Journal of Solid State Science and
Technology 7(6): R99-R103.
*Corresponding author; email: hafizhj@ukm.edu.my
|