Sains Malaysiana 49(11)(2020): 2801-2809

http://dx.doi.org/10.17576/jsm-2020-4911-19

 

Photophysical Properties and Energy Transfer Mechanism in PFO/TiO2/MEH-PPV Nanocomposite Thin Films

(Sifat Fotofizikal dan Mekanisma Pemindahan Tenaga dalam Filem Nipis Nano Komposit PFO/TiO2/MEH-PPV)
 

SAMEER ALBATI1, MOHAMMAD HAFIZUDDIN HJ. JUMALI1*, BANDAR ALI AL ASBAHI2,3, SAIF M.H. QAID2 & CHI CHIN YAP1

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

 

3Department of Physics, Faculty of Science, Sana'a University, Yemen

 

Received: 16 December 2019/Accepted: 22 May 2020

 

ABSTRACT

Improvement in photophysical properties of poly-9,9-dioctylfluorene (PFO)/10 wt. % TiO2 nanoparticle thin film as a result of systematic additions of poly(2-methoxy-5(2-ethylhexyl)-1,4-phenylenevinylene (MEH-PPV) were investigated. The nanocomposite blends were prepared with additions of MEH-PPV up to 3.0 wt. % of the total weight. All blends were prepared using the solution blending method and subsequently spin-coated onto glass substrates. The UV-Vis absorption and photoluminescence characterizations showed the intensification of the primary-color emissions of the thin films with the Förster resonance as the primary energy transfer mechanism from PFO to MEH-PPV. Important photophysical parameters, such as the Förster radius  excited state lifetime ( ), fluorescence quantum yield of the donor (φ), quenching constant ( ), quenching rate constant ( ), distance between the donor and acceptor ( ), energy transfer lifetime ( , and energy transfer rate (  display better values with increasing the contents of MEH-PPV by 2.5 wt. %, suggesting an ordered improvement on the photophysical properties of the thin film. Finally, a possible underlying mechanism describing the enhancement of the photophysical properties was proposed.

 

Keywords: Donor/acceptor; energy transfer properties; Förster resonance energy transfer; optical properties

 

ABSTRAK

Peningkatan sifat fotofizikal filem nipis adunan poli-9, 9-dioktilflorin (PFO)/10 bt % nanozarah TiO2 dengan penambahan secara sistematik poli(2-metoksi-5(2-etilheksil)-1, 4-fenileenevinilene (MEH-PPV) adalah dibuktikan. Adunan nanokomposit ini disediakan dengan menambah MEH-PPV sehingga 3.0 bt % daripada berat keseluruhan. Kesemua adunan disediakan menggunakan teknik adunan larutan dan kemudiannya dimendapkan ke atas substrat kaca menggunakan teknik salutan berputar. Pencirian penyerapan UV-Vis dan fotoluminesens menunjukkan peningkatan keamatan pancaran filem nipis dengan pemindahan tenaga resonans Förster sebagai mekanisma pemindahan tenaga primer daripada PFO kepada MEH-PPV. Semua parameter fotofizikal yang penting seperti jejari Förster , jangka hayat keadaan teruja( ), hasilan kuantum pendarfluor oleh penderma (φ), pemalar pelindapkejutan ( ), pemalar kadar pelindapkejutan ( ), jarak antara penderma dan penerima (), jangka hayat pemindahan tenaga (  dan kadar pemindahan tenaga (  menunjukkan nilai yang lebih baik dengan penambahan MEH-PPV sekaligus membuktikan penambahbaikan yang teratur terhadap sifat fotofizikal filem nipis. Dengan kehadiran nanozarah, keamatan sinaran warna prmier telah meningkat dengan pancaran yang seimbang antara PFO dan MEH_PPV Berjaya dicapai pada kandungan MEH-PPV sebanyak 2.5 bt % mencadangkan peningkatan yang teratur pada sifat fotozikal filem nipis. Kesimpulannya, mekasnima yang sesuai untuk menerangkan peningkatan sifat fotofizikal turut dicadangkan.

 

Kata kunci: Pemindahan tenaga resonan Förster; penderma/penerima; sifat optik; sifat pemindahan tenaga

 

 

REFERENCES

Al-Asbahi, B.A. 2018. Influence of SiO2/TiO2 nanocomposite on the optoelectronic properties of PFO/MEH-PPV-based OLED devices. Polymers 10(7): 800-806.

Al-Asbahi, B.A. 2017. Energy transfer mechanism and optoelectronic properties of (PFO/ TiO2)/Fluorol 7GA nanocomposite thin films. Optical Materials 72: 644-649.

Al-Asbahi, B.A., Haji Jumali, M.H. & AlSalhi, M.S. 2016. Enhanced optoelectronic properties of PFO/Fluorol 7GA hybrid light emitting diodes via additions of TiO2 nanoparticles. Polymers 8(9): 334-342.

Al-Asbahi, B.A., Jumali, M.H.H., Yap, C.C., Flaifel, M.H. & Salleh, M.M. 2013a. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films. Journal of Luminescence 142: 57-65.

Al-Asbahi, B.A., Jumali, M.H.H., Yap, C.C., Salleh, M.M. & Alsalhi, M.S. 2013b. Inhibition of dark quenching by TiO2 nanoparticles content in novel PFO/Fluorol 7GA hybrid: A new role to improve OLED performance. Chemical Physics Letters 570: 109-112.

Albrecht, C. 2008. Joseph R. Lakowicz: Principles of fluorescence spectroscopy. Analytical and Bioanalytical Chemistry 390(5): 1223-1224.

Ciotta, E., Prosposito, P. & Pizzoferrato, R. 2019. Positive curvature in Stern-Volmer plot described by a generalized model for static quenching. Journal of Luminescence 206: 518-522.

Cossiello, R.F., Susman, M.D., Aramendía, P.F. & Atvars, T.D.Z. 2010. Study of solvent-conjugated polymer interactions by polarized spectroscopy: MEH–PPV and Poly(9,9′-dioctylfluorene-2,7-diyl). Journal of Luminescence 130(3): 415-423.

Hegde, V., Chauhan, N., Kumar, V., Viswanath, C.S.D., Mahato, K.K. & Kamath, S.D. 2019. Effects of high dose gamma irradiation on the optical properties of Eu3+ doped zinc sodium bismuth borate glasses for red LEDs. Journal of Luminescence 207: 288-300.

Huang, T.H., Chi, X.C., Xu, T.N., Zhang, J.R., Xu, H.Y., Zhu, Z.Y., Yu, R.B., Wang, Y.H. & Zhang, H.Z. 2018. Effect of Ag nanoparticles on the photoluminescence of poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene]. Journal of Photochemistry and Photobiology A: Chemistry 356(2018): 334-339.

Huang, J., Li, G., Wu, E., Xu, Q. & Yang, Y. 2006. Achieving high‐efficiency polymer white‐light‐emitting devices. Advanced Materials 18(1): 114-117.

Jumali, M.H.H., Al-Asbahi, B.A., Yap, C.C., Salleh, M.M. & Alsalhi, M.S. 2012. Optoelectronic property enhancement of conjugated polymer in poly (9,9′-di-n-octylfluorenyl-2.7-diyl)/titania nanocomposites. Thin Solid Films 524: 257-262.

Karthikeyan, B. 2017. Förster resonance energy transfer and excited state life time reduction of rhodamine 6G with NiO nanorods in PVP films. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy 173: 301-306.

Kasparek, C. & Blom, P.W.M. 2017. Solution-processed multilayer polymer light-emitting diode without intermixing. Applied Physics Letters 110(2): 023302.

Lee, S.E., Oh, J.H., Baek, H.J., Kim, S., Do, Y.R. & Kim, Y.K. 2019. Realization of high-color-quality white-by-blue organic light-emitting diodes with yellow and red phosphor films. Journal of Luminescence 207: 195-200.

Li, X., Bai, Z., Liu, B., Li, T. & Lu, D. 2017. From starting formation to the saturation content of the β-phase in poly(9,9-dioctylfluorene) toluene solutions. Journal of Physical Chemistry C 121(27): 14443-14450.

Liu, J., Shi, Y. & Yang, Y. 2001. Improving the performance of polymer light-emitting diodes using polymer solid solutions. Applied Physics Letters 79(5): 578-580.

Madhwal, D., Rait, S.S., Verma, A., Kumar, A., Bhatnagar, P.K., Mathur, P.C. & Onoda, M. 2010. Increased luminance of MEH–PPV and PFO based PLEDs by using salmon DNA as an electron blocking layer. Journal of Luminescence 130(2): 331-333.

Nedumpara, R.J., Manu, P.J., Vallabhan, C.P.G., Nampoori, V.P.N. & Radhakrishnan, P. 2008. Energy transfer studies in dye mixtures in different solvent environments. Optics & Laser Technology 40(7): 953-957.

Pandey, K.K., Joshi, H.C. & Pant, T.C. 1988. Excitation energy migration and transfer in a dye pair in PMMA. Journal of Luminescence 42(4): 197-203.

Perevedentsev, A., Chander, N., Kim, J.S. & Bradley, D.D.C. 2016. Spectroscopic properties of poly(9,9-dioctylfluorene) thin films possessing varied fractions of β-phase chain segments: Enhanced photoluminescence efficiency via conformation structuring. Journal of Polymer Science, Part B: Polymer Physics 54(19): 1995-2006.

Prakash, A. & Katiyar, M. 2016. Effect of guest concentration on carrier transportation in blends of conjugated polymers. Organic Electronics 39: 50-58.

Schweitzer, C. & Schmidt, R. 2003. Physical mechanisms of generation and deactivation of singlet oxygen. Chemical Reviews 103(5): 1685-1758.

Shen, F., He, F., Lu, D., Xie, Z., Xie, W., Ma, Y. & Hu, B. 2006. Bright and colour stable white polymer light-emitting diodes. Semiconductor Science and Technology 21(2): L16-L19.

Shin, S.B., Gong, S.C., Lee, H.M., Jang, J.G., Gong, M.S., Ryu, S.O., Lee, J.Y., Chang, Y.C. & Chang, H.J. 2009. Improving light efficiency of white polymer light emitting diodes by introducing the TPBi exciton protection layer. Thin Solid Films 517(14): 4143-4146.

Su, H., Wu, F., Shu, C., Tung, Y., Chi, Y. & Lee, G. 2005. Polyfluorene containing diphenylquinoline pendants and their applications in organic light emitting diodes. Journal of Polymer Science Part A: Polymer Chemistry 43(4): 859-869.

Thomas, S., Grohens, Y. & Jyotishkumar, P. 2014. Characterization of Polymer Blends: Miscibility, Morphology and Interfaces. New York: John Wiley & Sons. pp. 1-901.

Winokur, M.J., Slinker, J. & Huber, D.L. 2003. Structure, photophysics, and the order-disorder transition to the β-phase in poly (9, 9-(di-n, n-octyl) fluorene). Physical Review B 67(18): 184106.

Yan, F., Xing, G., Chen, R., Demir, H.V., Sun, H., Sum, T.C. & Sun, X.W. 2015. Efficient three-color white organic light-emitting diodes with a spaced multilayer emitting structure. Applied Physics Letters 106(2): 023302.

Yang, S.H. & Zhuang, D.W. 2011. Enhancement of efficiency of multilayer polymer light-emitting diodes by inserting blocking layers. Journal of Luminescence 131(4): 801-807.

Zhang, L., Li, X.L., Luo, D., Xiao, P., Xiao, W., Song, Y., Ang, Q. & Liu, B. 2017. Strategies to achieve high-performance white organic light-emitting diodes. Materials 10(12): 1378-1434.

Zhou, J., Zou, J., Dai, C., Zhang, Y., Luo, X. & Liu, B. 2018. High-efficiency and high-luminance three-color white organic light-emitting diodes with low efficiency roll-off. ECS Journal of Solid State Science and Technology 7(6): R99-R103.

 

*Corresponding author; email: hafizhj@ukm.edu.my

 

 

 

 

 

previous