Sains Malaysiana 49(11)(2020): 2811-2820
http://dx.doi.org/10.17576/jsm-2020-4911-20
Electrophoretic
Deposition of Carbon Nanotubes onto Zinc Substrates for Electrode Applications
(Pemendapan Elektroforetik Nanotiub Karbon ke dalam Substrat Zink untuk Aplikasi Elektrod)
NAPAPON
MASSA-ANGKUL1, JESPER T.N. KNIJNENBURG2,3, PORNNAPA
KASEMSIRI1,3, CHAIYAPUT KRUEHONG1, GÜNTHER G. SCHERER4,5,
PRINYA CHINDAPRASIRT3,6 & KAEWTA JETSRISUPARB1,3*
1Department of Chemical Engineering, Khon Kaen University, 40002 Khon Kaen, Thailand
2International College, Khon Kaen University, 40002 Khon Kaen, Thailand
3Sustainable Infrastructure Research and
Development Center, Khon Kaen University, 40002 Khon Kaen,
Thailand
4Department for Management of Science and
Technology Development, Ton Duc Thang University, Ho
Chi Minh City, Vietnam
5Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
6Department of Civil Engineering, Khon Kaen University, 40002 Khon Kaen, Thailand
Received:
25 December 2019/Accepted: 22 May 2020
ABSTRACT
Carbon nanotubes
(CNTs) as nanostructured materials have been widely used to improve
electrochemical performance of electrode materials for various batteries and electrolyzers. The
purpose of this work was to investigate the electrophoretic deposition (EPD) of
multi-walled CNTs (MWCNTs) onto Zn plates for application in aqueous Zn ion
batteries. The effects of MWCNTs on Zn oxidation and reduction were assessed
using cyclic voltammetry. Before EPD, the MWCNTs were modified using H2SO4/HNO3 under reflux to improve dispersion stability in water. Acid modification
shortened the MWCNTs but did not cause significant changes in crystallinity,
tube diameter, and interlayer spacing. In a second step, the acid modified
MWCNTs were homogeneously deposited onto a conductive Zn plate by EPD. Cyclic
voltammetry data indicate that the coating of Zn with MWCNTs does not affect
the Zn oxidation and reduction potential. Oxidation of Zn eventually leads to
formation of a ZnO film, protecting the Zn surface from
corrosion. When the protective ZnO film is dissolved,
the underlying Zn is oxidized, leading to unfavorable loss of Zn. The presence
of MWCNTs reduces oxidation during the cathodic sweep, implying that the MWCNT coating partially protects the underlying Zn surface
from oxidation during charging. In addition, the MWCNT coated electrodes also
facilitate hydrogen formation and show less oxygen limitation reaction, and
could thus be envisaged as possible electrode materials for energy storage devices
such as bifunctional electrodes for electrolyzers or air cathodes for batteries or fuel cells.
Keywords: Carbon nanotubes;
electrochemistry; electrophoretic deposition; zinc electrode
ABSTRAK
Nanotiub karbon (CNTs) sebagai bahan nano telah digunakan secara luas
untuk menambahbaik prestasi elektrokimia bahan elektrod dalam pelbagai bateri
dan bahan elektrod. Tujuan kajian ini ialah untuk mengkaji pemendapan
elektroforesis (EPD) CNTs berbilang dinding (MWCNTs) ke atas plat Zn untuk
kegunaan dalam bateri ion Zn akues. Kesan MWCNTs ke atas pengoksidaan dan
penurunan Zn telah dikaji menggunakan voltametri berkitar. Sebelum EPD, MWCNTs
telah diubah suai menggunakan H2SO4/HNO3 untuk menambahbaik kestabilan
penyebaran dalam air. Pengubahsuaian asid memendekkan MWCNTs tetapi tidak
menyebabkan perubahan nyata dalam kehabluran, diameter tiub dan jarak antara
lapisan. Pada langkah kedua, MWCNTs terubah suai asid telah dimendap ke atas
plat Zn melalui proses EPD. Data voltametri berkitar menunjukkan bahawa salutan
MWCNTs ke atas Zn tidak menjejaskan pengoksidaan Zn dan potensi penurunan.
Pengoksidaan Zn telah menyebabkan pembentukan lapisan ZnO yang melindungi
permukaan Zn daripada kakisan. Setelah lapisan ZnO terlarut, Zn pada lapisan
bawah telah teroksida dan menyebabkan kehilangan Zn. Kehadiran MWCNTs telah
mengurangkan pengoksidaan semasa sapuan katod, menunjukkan bahawa salutan
MWCNTs telah melindungi sebahagian permukaan Zn di bawah daripada pengoksidaan semasa
pengecasan. Tambahan pula, elektrod bersalut MWCNTs juga membantu pembentukan
hidrogen dan menunjukkan tindak balas pengehadan oksigen, dan boleh diramal
sebagai bahan elektrod dalam peralatan penyimpanan tenaga seperti elektrod
dwifungsi untuk bahan elektrod atau katod udara untuk bateri dan sel fuel.
Kata kunci: Elektrokimia; elektrod zink; nanotiub karbon; pemendapan
elektroforesis
REFERENCES
Besra,
L. & Liu, M. 2007. A review on fundamentals and applications of
electrophoretic deposition (EPD). Progress
in Materials Science 52(1): 1-61.
Bockelmann,
M., Reining, L., Kunz, U. & Turek, T. 2017. Electrochemical
characterization and mathematical modeling of zinc passivation in alkaline
solutions: A review. Electrochimica Acta 237: 276-298.
Cai,
M. & Park, S.M. 1996. Spectroelectrochemical studies on dissolution and
passivation of zinc electrodes in alkaline solutions. Journal of the Electrochemical Society 143(7): 2125-2131.
Che,
B.D., Nguyen, B.Q., Nguyen, L.T.T., Nguyen, H.T., Nguyen, V.Q., Van Le, T.
& Nguyen, N.H. 2015. The impact of different multi-walled carbon nanotubes
on the X-band microwave absorption of their epoxy nanocomposites. Chemistry Central Journal 9(1): 10.
Chen,
X., Gao, P., Liu, H., Xu, J., Zhang, B., Zhang, Y., Tang, Y. & Xiao, C.
2018. In situ growth of iron-nickel
nitrides on carbon nanotubes with enhanced stability and activity for oxygen
evolution reaction. Electrochimica Acta 267: 8-14.
Chiang,
Y.C., Lin, W.H. & Chang, Y.C. 2011. The influence of treatment duration on
multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Applied Surface Science 257(6): 2401-2410.
Cho,
J., Konopka, K., Rozniatowski, K., García-Lecina, E., Shaffer, M.S.P. &
Boccaccini, A.R. 2009. Characterisation of carbon nanotube films deposited by
electrophoretic deposition. Carbon 47(1): 58-67.
Cychosz,
K.A., Guillet-Nicolas, R., García-Martínez, J. & Thommes, M. 2017. Recent
advances in the textural characterization of hierarchically structured
nanoporous materials. Chemical Society
Reviews 46(2): 389-414.
Darband,
G.B., Aliofkhazraei, M. & Rouhaghdam, A.S. 2018. Three-dimensional porous
Ni-CNT composite nanocones as high performance electrocatalysts for hydrogen
evolution reaction. Journal of
Electroanalytical Chemistry 829: 194-207.
Du,
C., Heldebrant, D. & Pan, N. 2002. Preparation of carbon nanotubes
composite sheet using electrophoretic deposition process. Journal of Materials Science Letters 21(7): 565-568.
Dubouis,
N. & Grimaud, A. 2019. The hydrogen evolution reaction: From material to
interfacial descriptors. Chemical Science 10(40): 9165-9181.
Fu,
J., Cano, Z.P., Park, M.G., Yu, A., Fowler, M. & Chen, Z. 2017.
Electrically rechargeable zinc-air batteries: Progress, challenges, and
perspectives. Advanced Materials 29(7): 1604685.
Gómez,
S., Rendtorff, N.M., Aglietti, E.F., Sakka, Y. & Suárez, G. 2016. Surface
modification of multiwall carbon nanotubes by sulfonitric treatment. Applied Surface Science 379: 264-269.
Higashi,
S., Lee, S.W., Lee, J.S., Takechi, K. & Cui, Y. 2016. Avoiding short
circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications 7: 11801.
Hu,
J.W., Wu, Z.P., Zhong, S.W., Zhang, W.B., Suresh, S., Mehta, A. & Koratkar,
N. 2016. Folding insensitive, high energy density lithium-ion battery featuring
carbon nanotube current collectors. Carbon 87(C): 292-298.
Huq,
M.M., Hsieh, C.T. & Ho, C.Y. 2016. Preparation of carbon nanotube-activated
carbon hybrid electrodes by electrophoretic deposition for supercapacitor
applications. Diamond and Related
Materials 62: 58-64.
Kharissova,
O.V. & Kharisov, B.I. 2014. Variations of interlayer spacing in carbon
nanotubes. RSC Advances 4(58):
30807-30815.
Kim,
U.J., Furtado, C.A., Liu, X., Chen, G. & Eklund, P.C. 2005. Raman and IR
spectroscopy of chemically processed single-walled carbon nanotubes. Journal of the American Chemical Society 127(44): 15437-15445.
Lu,
W., Xie, C., Zhang, H. & Li, X. 2018. Inhibition of zinc dendrite growth in
zinc-based batteries. ChemSusChem 11(23): 3996-4006.
Maiaugree,
W., Pimanpang, S., Jarernboon, W. & Amornkitbamrung, V. 2016. Influence of
acid modification multiwall carbon nanotube counter electrodes on the glass and
flexible dye-sensitized solar cell performance. International Journal of Photoenergy 2016: 2853046.
Mainar,
A.R., Colmenares, L.C., Grande, H.J. & Blázquez, J.A. 2018. Enhancing the
cycle life of a zinc-air battery by means of electrolyte additives and zinc
surface protection. Batteries 4(3):
46.
Mansor,
N.A., Tessonnier, J.P., Rinaldi, A., Reiche, S. & Kutty, M.G. 2012.
Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic
groups. Sains Malaysiana 41(5):
603-609.
Moore,
J.J., Kang, J.H. & Wen, J.Z. 2012. Fabrication and characterization of
single walled nanotube supercapacitor electrodes with uniform pores using
electrophoretic deposition. Materials
Chemistry and Physics 134(1): 68-73.
Nazeeruddin,
M.K., Humphry-Baker, R., Liska, P. & Grätzel, M. 2003. Investigation of
sensitizer adsorption and the influence of protons on current and voltage of a
dye-sensitized nanocrystalline TiO2 solar cell. The Journal of
Physical Chemistry B 107(34): 8981-8987.
Nie,
C., Pan, L., Li, H., Chen, T., Lu, T. & Sun, Z. 2012. Electrophoretic
deposition of carbon nanotubes film electrodes for capacitive deionization. Journal of Electroanalytical Chemistry 666: 85-88.
Praveen,
B.M., Venkatesha, T.V., Naik, Y.A. & Prashantha, K. 2007. Corrosion studies
of carbon nanotubes–Zn composite coating. Surface
& Coatings Technology 201(12): 5836-5842.
Qu,
C., Cheng, F., Su, H. & Zhao, Y. 2016. Dispergation and modification of
multi-walled carbon nanotubes in aqueous solution. Russian Journal of Physical Chemistry A 90(11): 2230-2236.
Saleh,
T.A. 2011. The influence of treatment temperature on the acidity of MWCNT
oxidized by HNO3 or a mixture of HNO3/H2SO4. Applied Surface Science 257(17):
7746-7751.
Scheibe,
B., Borowiak-Palen, E. & Kalenczuk, R.J. 2010. Oxidation and reduction of
multiwalled carbon nanotubes - preparation and characterization. Materials Characterization 61(2):
185-191.
Sezer,
N. & Koç, M. 2019. Oxidative acid treatment of carbon nanotubes. Surfaces and Interfaces 14: 1-8.
Silva,
W.M., Ribeiro, H., Seara, L.M., Calado, H.D.R., Ferlauto, A.S., Paniago, R.M.,
Leite, C.F. & Silva, G.G. 2012. Surface properties of oxidized and aminated
multi-walled carbon nanotubes. Journal of
the Brazilian Chemical Society 23(6): 1078-1086.
Thomas,
B.J.C., Shaffer, M.S.P., Freeman, S., Koopman, M., Chawla, K.K. &
Boccaccini, A.R. 2006. Electrophoretic deposition of carbon nanotubes on
metallic surfaces. Key Engineering
Materials 314: 141-146.
Thomas,
B.J.C., Boccaccini, A.R. & Shaffer, M.S.P. 2005. Multi-walled carbon
nanotube coatings using Electrophoretic Deposition (EPD). Journal of the American Ceramic Society 88(4): 980-982.
Triamthaisong,
S., Kruehong, C., Jarernboon, W., Amornkitbamrung, V., Chindaprasirt, P. &
Jetsrisuparb, K. 2018. Development of composite electrodes containing
geopolymer binder for electrochemical applications. Journal of Engineering Science and Technology 13(10): 3017-3028.
Varga,
M., Izak, T., Vretenar, V., Hozak, H., Holovsky, J., Artemenko, A., Hulman, M.,
Skakalova, V., Lee, D.S. & Kromka, A. 2017. Diamond/carbon nanotube
composites: Raman, FTIR and XPS spectroscopic studies. Carbon 111: 54-61.
Wang,
K., Pei, P., Ma, Z., Chen, H., Xu, H., Chen, D. & Wang, X. 2015. Dendrite
growth in the recharging process of zinc-air batteries. Journal of Materials Chemistry A 3(45): 22648-22655.
Wei,
X.P., Zhang, R.Q., Wang, L.B., Luo, Y.L., Xu, F. & Chen, Y.S. 2019. Novel
multi-walled carbon nanotubes decorated with gold nanoparticles with poly
(2-methacryloyloxyethyl ferrocenecarboxylate) grafted on to form
organic-inorganic nanohybrids: Preparation, characterization, and
electrochemical sensing applications. Journal
of Materials Chemistry C 7(1): 119-132.
Werder,
T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Noca, F. & Koumoutsakos, P.
2001. Molecular dynamics simulation of contact angles of water droplets in
carbon nanotubes. Nano Letters 1(12): 697-702.
Xu, W., Lu, Z., Sun, X., Jiang, L. & Duan, X. 2018. Superwetting electrodes for gas-involving
electrocatalysis. Accounts of Chemical
Research 51(7): 1590-1598.
Ye,
L., Wen, K., Zhang, Z., Yang, F., Liang, Y., Lv, W., Lin, Y., Gu, J.,
Dickerson, J.H. & He, W. 2016. Highly efficient materials assembly via
electrophoretic deposition for electrochemical energy conversion and storage
devices. Advanced Energy Materials 6(7): 1502018.
Zhang,
J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X. & Du, Z. 2003.
Effect of chemical oxidation on the structure of single-walled carbon
nanotubes. Journal of Physical Chemistry
B 107(16): 3712-3718.
Zhao,
L. & Gao, L. 2003. Stability of multi-walled carbon nanotubes dispersion
with copolymer in ethanol. Colloids and
Surfaces A: Physicochemical and Engineering Aspects 224(1-3): 127-134.
*Corresponding
author; email: kaewta@kku.ac.th
|